人工智能 lisp
人工智能发展协会 (AAAI)表示,人工智能(AI)如今风行一时,其对世界的巨大影响仍将持续 。 根据有关Nanalyze的文章:
“ 2014年皮尤研究中心接受调查的近2,000名专家中的绝大多数说,他们预计到2025年机器人技术和人工智能将渗透到日常生活的各个领域。2015年的一项研究涵盖了17个国家,发现人工智能和相关技术估计增加了0.4%这些国家在1993年至2007年间的年度GDP平均增幅为5%,仅占同期这些国家总体GDP增长率的十分之一。”
但是,这是AI第二次获得如此多的关注。 人工智能什么时候第一次流行,那与晦涩但经常被人们喜爱的编程语言Lisp有什么关系?
命令行英雄第三季的倒数第二个播客深入探讨了这些主题,使我们开始思考以AI为核心的开源。
学期AI之前
思维机器早在数百年前就成为人们的好奇心。 在1800年代,计算机科学先驱Charles Babbage和Ada Lovelace设想了一种分析引擎,该引擎能够进行远远超出人类技能的预测,例如在比赛中正确选择获胜的马匹。
在1940年代和50年代,艾伦·图灵(Alan Turing)定义了智能机器模仿人类智能的外观。 这就是我们现在所说的图灵测试。 在他1950年的研究论文中 ,图灵的“模仿游戏”开始说服某人,他们实际上是在与另一房间里的人交流。
尽管这些理论激发了富有想象力的辩论,但随着计算机硬件开始提供足够的功能来开始进行实验,它们的理论性逐渐减弱。
为什么Lisp是AI理论的核心
约翰·麦卡锡(John McCarthy)是创造“人工智能”一词的人,也是重新发明了我们如何设计思维机器的人。 他重新构想的方法被编入Lisp编程语言。 正如保罗·格雷厄姆 ( Paul Graham )所说:
“ 1960年, 约翰·麦卡锡 ( John McCarthy)发表了一篇非凡的论文,其中他编写了类似于Euclid对几何所做的编程。他展示了如何在少数简单的运算符和函数符号的基础上构建完整的编程语言。他称: Lisp语言用于“列表处理”,因为他的主要思想之一是为代码和数据使用称为列表的简单数据结构。
“值得了解麦卡锡的发现,这不仅是计算机历史上的一个里程碑,而且是我们自己时代编程正逐渐成为一种模型的模型。在我看来,已经有两个真正干净,一致的模型。迄今为止的编程:C模型和Lisp模型这两个似乎是制高点,它们之间是沼泽地。随着计算机功能的增强 ,正在开发的新语言正稳步向Lisp模型发展。在过去的20年中,对于新的编程语言而言,采用的是C语言的计算模型,并逐步添加从Lisp模型中获取的零碎部分,例如运行时类型和垃圾回收。”
我记得我第一次为计算机科学课编写Lisp时。 将头缠在看似无限的括号中之后,我发现了一种优美的思维方式:我可以通过我希望该软件执行的操作来进行思考吗?

这听起来很愚蠢:计算机处理我们编写的代码,但是递归的某些特性使我的思维方式截然不同。 得知15年前,我可能一直在研究麦卡锡(McCarthy)所描述的大变化,真是令人兴奋。
为什么AI放缓?
到1960年代中后期,麦卡锡的工作已进入一个新的研究领域,在这个领域,人工智能,机器学习(ML)和深度学习都成为了可能。 Lisp成为了这个新兴领域公认的标准。 据说1968年,麦卡锡(McCarthy)与苏格兰象棋大师大卫·列维(David Levy)下注,在10年内,一台计算机将能够在象棋比赛中击败列维。 为什么要花近30年才能进入著名的《 深蓝》对阵加里·卡斯帕罗夫(Garry Kasparov)的比赛?
Command Line Heroes探索了一种理论:对AI的营利性投资从推动科学的学术界吸引了重要人才,并将他们推向了另一条道路。 不管这是否是原因,人工智能的世界陷入了一个“冬天”,人们在追求它的人们被认为是不现实的。
这个AI冬天持续了相当长的时间。 2005年,《 纽约时报》报道了AI的污名化,以至于“一些计算机科学家和软件工程师避免使用人工智能一词,因为他们害怕被视为野心勃勃的梦想家。”
AI现在在哪里?
快进到今天,谈论AI或ML可以Swift吸引人们的注意力-但是这种关注并不总是积极的。 许多人担心AI会从世界上删除数百万个工作。 还有人说,这将创造比失去的更多的工作机会。
判决仍然没有。 麦肯锡关于失业与就业增长争论的研究令人着迷。 当您考虑到世界消费的增长,人口的老龄化,以前无偿家务劳动的“市场化”以及其他因素时,您会发现答案取决于您的前景。
可以肯定的是:人工智能将成为我们生活的重要组成部分,它将比其他技术领域产生更广泛的影响。 由于这个原因(尤其是其他原因),检查关于AI中道德和偏见的误解至关重要。
开源和AI
麦卡锡梦想着机器可以有常识。 他的AI目标从一开始就包括开源。 这可以在Red Hat精美的动画网页上看到,该网页介绍了AI的起源及其开源根源 。
如果我们要实现McCarthy,Turing或其他AI先锋的目标,我相信这将是由于该技术背后的开源社区。 AI之所以重新流行,部分原因在于开放源代码:我们分析的语言,框架和数据集越来越开放。 以下是一些值得探索的事情:
- 学习足够的Python和R以成为未来的一部分
- 探索可提高您技能的Python库
- 了解AI和ML之间的关系
- 探索免费和开放的数据集
- 使用Lisp的现代实现, 可在开源许可下获得
早期的AI可能在错误的十年中探索了正确的想法。 当时的世界一流计算机甚至没有今天的手机强大,每台手机都由数十个人共享。 今天,我们许多人拥有多台超级计算机,并一直随身携带。 因此,除其他外,人工智能的未来是强大的,其最高成就尚未到来。
Command Line Heroes涵盖了第3季的所有编程语言。请订阅,以便您不会错过该季的最后一集 ,我很想听听您在以下评论中的想法。
翻译自: https://opensource.com/article/19/9/command-line-heroes-lisp
人工智能 lisp