离散数学和组合数学什么关系_关系类型| 离散数学

本文介绍了离散数学中的关系类型,包括普遍关系、称赞关系、空关系、关系逆、复合关系、等价关系、偏序关系、反对称关系、非反射关系。离散数学和组合数学在集合论、图论等领域有密切联系,是计算机科学的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散数学和组合数学什么关系

关系类型 (Types of Relation)

There are many types of relation which is exist between the sets,

集合之间存在许多类型的关系,

1. Universal Relation

1.普遍关系

A relation r from set a to B is said to be universal if: R = A * B

从组a到b关系R被认为是通用的,如果:R = A * B

Example:

例:

A = {1,2} B = {a, b}

A = {1,2} B = {a,b}

R = { (1, a), (1, b), (2, a), (2, b) is a universal relation.

R = {(1,a),(1,b),(2,a),(2,b)是普遍关系。

2. Compliment Relation

2.称赞关系

Compliment of a relation will contain all the pairs where pair do not belong to relation but belongs to Cartesian product.

关系的称赞将包含所有对,其中对不属于关系而是属于笛卡尔积。

R = A * B – X

R = A * B – X

Example:

例:

A = { 1, 2}   B = { 3, 4}
R = { (1, 3) (2, 4) }
Then the complement of R
Rc = { (1, 4) (2, 3) }

3. Empty Relation

3.空关系

A null set phie is subset of A * B.

空集phie是A * B的子集。

R = phie is empty relation

R = phi是空关系

4. Inverse of relation

4.关系逆

An inverse of a relation is denoted by R^-1 which is the same set of pairs just written in different or reverse order. Let R be any relation from A to B. The inverse of R denoted by R^-1 is the relation from B to A defined by:

关系的逆由R ^ -1表示, R ^ -1是只是以不同或相反顺序写入的同一对对的集合。 令R为从A到B的任何关系。 R的逆表示由R ^ -1是从B到A的关系由下式定义:

 R^-1 = { (y, x) : yEB, xEA, (x, y) E R}

5. Composite Relation

5.复合关系

Let A, B, and C be any three sets. Let consider a relation R from A to B and another relation from B to C. The composition relation of the two relation R and S be a Relation from the set A to the set C, and is denoted by RoS and is defined as follows:

ABC为任意三个集合。 让我们考虑从A到B的关系R和从B到C的另一个关系。 两个关系RS的组成关系是从集合A集合C的一个关系,用RoS表示,并定义如下:

Ros = { (a, c) : an element of B such that (a, b) E R and (b, c) E s, when a E A , c E C}
Hence, (a, b) E R (b, c) E S => (a, c) E RoS
.

Ros = {(a,c):B的元素,当EA,c EC时具有(a,b)ER和(b,c)E s
因此,(a,b)ER(b,c)ES =>(a,c)E RoS

6. Equivalence Relation

6.等价关系

The relation R is called equivalence relation when it satisfies three properties if it is reflexive, symmetric, and transitive in a set x. If R is an equivalence relation in a set X then D(R) the domain of R is X itself. Therefore, R will be called a relation on X.

关系R如果满足集合x中的自反,对称和可传递的三个属性,则称为等价关系。 如果R集合X中的等价关系,则D(R)R域是X本身。 因此, R将被称为X上的关系。

The following are some examples of the equivalence relation:

以下是等价关系的一些示例:

  • Equality of numbers on a set of real numbers.

    一组实数上的数字相等。

  • Equality of subsets of a universal set.

    通用集的子集的相等性。

  • Similarities of triangles on the set of triangles.

    三角形集上三角形的相似性。

  • Relation of lines being a parallel onset of lines in a plane.

    线的关系是平面中线的平行起点。

  • Relation of living in the same town on the set of persons living in Canada.

    在加拿大居住的同一套城镇中居住的关系。

7. Partial order relation

7.偏序关系

Let, R be a relation in a set A then, R is called partial order Relation if,

假设R集合A中的一个关系,那么,如果R被称为偏序关系,

  • R is reflexive

    R是反身的

    i.e. aRa ,a belongs to A

    即aRa,a属于A

  • R is anti- symmetric

    R是反对称的

    i.e. aRb, bRa => a = b, a, b belongs to a

    即aRb,bRa => a = b,a,b属于a

  • R is transitive

    R是可传递的

    aRb, bRc => aRc, a, b, c belongs to A

    aRb,bRc => aRc,a,b,c属于A

8. Antisymmetric Relation

8.反对称关系

A relation R on a set a is called on antisymmetric relation if for x, y if for x, y =>

如果对于x,y,则对集合a的关系R称为反对称关系对于x,y =>

If (x, y) and (y, x) E R then x = y

如果(x,y)和(y,x)ER,则x = y

Example: { (1, 2) (2, 3), (2, 2) } is antisymmetric relation.

示例:{(1,2)(2,3),(2,2)}是反对称关系。

A relation that is antisymmetric is not the same as not symmetric. A relation can be antisymmetric and symmetric at the same time.

反对称关系与非对称关系不相同。 一个关系可以同时是反对称的和对称的。

9. Irreflective relation

9.反射关系

A relation R is said to be on irreflective relation if x E a (x ,x) does not belong to R.

关系R被说成是对irreflective关系如果x E中的(X,X)不属于R上

Example:

例:

    a = {1, 2, 3}
    R = { (1, 2), (1, 3) if is an irreflexive relation

10. Not Reflective relation

10.非反思关系

A relation R is said to be not reflective if neither R is reflexive nor irreflexive.

如果R既不是自反的也不是自反的,则关系R被认为是不反射的。

翻译自: https://www.includehelp.com/basics/types-of-relation-discrete mathematics.aspx

离散数学和组合数学什么关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值