The series is: 1-2+3-4+5-6+7-8...N terms, we have to find out the sum up to Nth terms.
该序列是: 1-2 + 3-4 + 5-6 + 7-8 ... N个项 ,我们必须找出第N个项之和。
Solution:
解:
Let's analyse this problem,
让我们分析这个问题,
If we want Sum of this series up to 2nd term then sum will be:
1-2 =-1
Up to 3rd term:
1-2+3 =2
Up to 4th term
1-2+3-4 = -2
Up to 5th term:
1-2+3-4+5= 3
.
.
.
Now we can conclude that if we want sum up to an Odd term then we always get sum as ((N+1)/2) and if we want sum up to an Even term the sum is in the form of (-1*(N/2)).
现在我们可以得出结论,如果要对一个奇数项求和,则总和为((N + 1)/ 2),如果要对一个偶数项求和,则总和为(-1 * (N / 2))。
Now Let's make logic for this using c programming,
现在,让我们使用C编程为此逻辑,
#include <stdio.h>
//function for creating the sum of the
//series up to Nth term
int series_sum(int n)
{
if (n % 2 == 0)
return (-(n / 2));
else
return ((n + 1) / 2);
}
// main code
int main()
{
int n;
printf("Series:1-2+3-4+5-6+7-8.....N\n");
printf("Want some up to N terms?\nEnter the N term:");
scanf("%d", &n);
printf("Sum is:%d", series_sum(n));
return 0;
}
Output
输出量
Series:1-2+3-4+5-6+7-8.....N
Want some up to N terms?
Enter the N term:10
Sum is:-5
Read more...
阅读更多...
翻译自: https://www.includehelp.com/c-programs/calculate-the-sum-of-the-series-1-2-3-4-5-6-7-8-n-terms.aspx