数组与数组操作 (Array with Array operations)
import numpy as np
arr = np.arange(0,11)
print(arr)
# returns the sum of the numbers
print(arr + arr)
# returns the diff between the numbers
print(arr - arr)
# returns the multiplication of the numbers
print(arr * arr )
# the code will continue to run but shows an error
print(arr / arr )
Output
输出量
[ 0 1 2 3 4 5 6 7 8 9 10]
[ 0 2 4 6 8 10 12 14 16 18 20]
[0 0 0 0 0 0 0 0 0 0 0]
[ 0 1 4 9 16 25 36 49 64 81 100]
main.py:13: RuntimeWarning: invalid value encountered in true_divide
print(arr / arr )
[nan 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
具有标量运算的数组 (Array with Scalar operations)
Similar to array with array operations, a NumPy array can be operated with any scalar numbers. Below are few examples,
类似于使用数组进行数组操作,NumPy数组可以使用任何标量数进行操作。 以下是一些示例,
import numpy as np
arr = np.arange(0,11)
print(arr)
print(arr ** 2)
print(arr + 1)
print(arr - 2)
print(arr *100)
print(arr /100)
Output
输出量
[ 0 1 2 3 4 5 6 7 8 9 10]
[ 0 1 4 9 16 25 36 49 64 81 100]
[ 1 2 3 4 5 6 7 8 9 10 11]
[-2 -1 0 1 2 3 4 5 6 7 8]
[ 0 100 200 300 400 500 600 700 800 900 1000]
[0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 ]
通用阵列功能 (Universal Array Functions)
NumPy supports universal array functions which are essentially just mathematical functions used to perform the operation and broadcast across the entire array.
NumPy支持通用数组函数,该函数本质上只是用于执行操作并在整个数组中广播的数学函数。
Some of the common examples are,
一些常见的例子是
import numpy as np
arr = np.arange(0,11)
print(arr)
# will return the square root of all elements
print(np.sqrt(arr))
# will return the exponential of all elements
print(np.exp(arr))
# will return the max value
print(np.max(arr))
# will return sin value
print(np.sin(arr))
# will return log value. If error, issue warnings
print(np.log(arr))
#will return cos value
print(np.cos(arr))
Output
输出量
[ 0 1 2 3 4 5 6 7 8 9 10]
[0. 1. 1.41421356 1.73205081 2. 2.23606798 2.44948974 2.64575131 2.82842712 3. 3.16227766]
[1.00000000e+00 2.71828183e+00 7.38905610e+00 2.00855369e+01
5.45981500e+01 1.48413159e+02 4.03428793e+02 1.09663316e+03 2.98095799e+03 8.10308393e+03 2.20264658e+04]
10[ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
-0.2794155 0.6569866 0.98935825 0.41211849 -0.54402111]
main.py:15: RuntimeWarning: divide by zero encountered in log
print(np.log(arr))[ -inf 0. 0.69314718 1.09861229 1.38629436 1.60943791
1.79175947 1.94591015 2.07944154 2.19722458 2.30258509][ 1. 0.54030231 -0.41614684 -0.9899925 -0.65364362 0.28366219
0.96017029 0.75390225 -0.14550003 -0.91113026 -0.83907153]
Refer to link https://docs.scipy.org/doc/numpy/reference/ufuncs.html for the list of operations provided by NumPy.
有关NumPy提供的操作列表,请参阅链接https://docs.scipy.org/doc/numpy/reference/ufuncs.html 。
翻译自: https://www.includehelp.com/python/numpy-array-operations.aspx