回文子序列_计算回文子序列的总数

本文介绍了如何计算给定字符串的回文子序列总数。通过动态规划自下而上的方法解决此问题,初始化二维dp数组,并填充基本情况。对于更长的字符串,根据起始和结束字符是否相同来递归计算剩余字符的回文子序列数量。以字符串'aaaa'为例解释了算法的工作原理,并提供了C++实现。
摘要由CSDN通过智能技术生成

回文子序列

Problem statement:

问题陈述:

Given a string str, find total number of possible palindromic sub-sequences. A sub-sequence does not need to be consecutive, but for any xixj i<j must be valid in the parent string too. Like "icl" is a subsequence of "includehelp" while "ple" is not.

给定字符串str ,找到可能的回文子序列的总数。 子序列不必是连续的,但是对于任何x i x j i <j在父字符串中也必须有效。 像“ icl”一样,是“ includehelp”的子序列,而“ ple”则不是。

Input:

输入:

The first line of input contains an integer T, denoting the no of test cases then T test cases follow. Each test case contains a string str.

输入的第一行包含一个整数T ,表示测试用例的数量,然后是T个测试用例。 每个测试用例都包含一个字符串str

Output:

输出:

For each test case output will be an integer denoting the total count of palindromic subsequence which could be formed from the string str.

对于每个测试用例,输出将是一个整数,表示回文子序列的总数,该总数可以由字符串str形成。

Constraints:

限制条件:

1 <= T <= 100
1 <= length of string str <= 300

Example:

例:

Input:
Test case: 2

First test case:
Input string:
"aaaa"

Output:
Total count of palindromic subsequences is: 15

Second test case:
Input string:
"abaaba"

Output:
Total count of palindromic subsequences is: 31

Explanation:

说明:

Test case 1:

测试用例1:

Input: "aaaa"

输入:“ aaaa”

The valid palindromic subsequences are shown below,

有效回文子序列如下所示,

Marked cells are character taken in subsequence:

标记的单元格是子序列中的字符:

Count=1

计数= 1

Count total number of Palindromic Subsequences (1)

Count=2

计数= 2

Count total number of Palindromic Subsequences (2)

Count=3

计数= 3

Count total number of Palindromic Subsequences (3)

Count=4

计数= 4

Count total number of Palindromic Subsequences (4)

Count=5

计数= 5

Count total number of Palindromic Subsequences (5)

Count=6

计数= 6

Count total number of Palindromic Subsequences (6)

Count=7

计数= 7

Count total number of Palindromic Subsequences (7)

Count=8

计数= 8

Count total number of Palindromic Subsequences (8)

Count=9

计数= 9

Count total number of Palindromic Subsequences (9)

Count=10

数= 10

Count total number of Palindromic Subsequences (10)

Count=11

数= 11

So on...
Total 15 palindromic sub-sequences
Actually in this case since all the character is same each and every subsequence is palindrome here.
For the second test case
Few sub-sequences can be
"a"
"b"
"a"
"aba"
So on
Total 31 such palindromic subsequences

等等...
总共15个回文子序列
实际上,在这种情况下,由于所有字符都是相同的,每个子序列在这里都是回文。
对于第二个测试用例
很少有子序列可以是
“一个”
“ b”
“一个”
“阿巴”
依此类推
总共31个这样的回文序列

Solution approach

解决方法

This can be solved by using DP bottom up approach,

这可以通过使用DP自下而上的方法来解决,

  1. Initialize dp[n][n] where n be the string length to 0

    初始化dp [n] [n] ,其中n为0的字符串长度

  2. Fill up the base case, Base case is that each single character is a palindrome itself. And for length of two, i.e, if adjacent characters are found to be equal then dp[i][i+1]=3, else if characters are different then dp[i][i+1]=2

    填满基本情况,基本情况是每个单个字符本身都是回文。 对于两个长度,即,如果发现相邻字符相等,则dp [i] [i + 1] = 3 ;否则,如果字符不同,则dp [i] [i + 1] = 2

    To understand this lets think of a string like "acaa"

    要理解这一点,可以考虑一个字符串,例如“ acaa”

    Here

    这里

    dp[0][1]=2 because there's only two palindrome possible because of "a" and "c".

    dp [0] [1] = 2是因为“ a”和“ c”仅可能存在两个回文。

    Whereas for

    鉴于

    dp[2][3] value will be 3 as possible subsequences are "a", "a", "aa".

    dp [2] [3]的值将为3,因为可能的子序列为“ a”,“ a”,“ aa”。

    for i=0 to n
        // for single length characters
        dp[i][i]=1; 
        if(i==n-1)
            break;        
        if(s[i]==s[i+1])
            dp[i][i+1]=3;
        else
            dp[i][i+1]=2;
    end for
    
    
  3. Compute for higher lengths,

    计算更长的长度,

    for len=3 to n
        for start=0 to n-len
            int end=start+len-1;
            // start and end is matching
            if(s[end]==s[start])
                // 1+subsequence from semaining part
                dp[start][end]=1+dp[start+1][end]+dp[start][end-1];
            else
                dp[start][end]=dp[start+1][end]+dp[start][end-1]-dp[start+1][end-1];
            end if
        end for
    end for
    
    
  4. Final result is stored in dp[0][n-1];

    最终结果存储在dp [0] [n-1]中;

So for higher lengths if starting and ending index is the same then we recur for the remaining characters, since we have the sub-problem result stored so we computed that. In case start and end index character are different then we have added dp[start+1][end] and dp[start][end-1] that's similar to recur for leaving starting index and recur for leaving end index. But it would compute dp[start+1][end-1] twice and that why we have deducted that.

因此,对于更大的长度,如果开始索引和结束索引相同,那么我们将重复其余字符,因为我们存储了子问题结果,因此我们对其进行了计算。 如果起始索引和终止索引的字符不同,则我们添加了dp [start + 1] [end]dp [start] [end-1] ,类似于recur离开起始索引和recur离开结束索引。 但是它将两次计算dp [start + 1] [end-1] ,这就是为什么我们要减去它。

For proper understanding you can compute the table by hand for the string "aaaa" to understand how it's working.

为了正确理解,您可以手动计算字符串“ aaaa”的表以了解其工作方式。

C++ Implementation:

C ++实现:

#include <bits/stdc++.h>
using namespace std;

int countPS(string s)
{

    int n = s.length();
    int dp[n][n];
    
    memset(dp, 0, sizeof(dp));

    for (int i = 0; i < n; i++) {
        dp[i][i] = 1;
        if (i == n - 1)
            break;

        if (s[i] == s[i + 1])
            dp[i][i + 1] = 3;
        else
            dp[i][i + 1] = 2;
    }

    for (int len = 3; len <= n; len++) {
        for (int start = 0; start <= n - len; start++) {
            int end = start + len - 1;
            if (s[end] == s[start]) {
                dp[start][end] = 1 + dp[start + 1][end] + dp[start][end - 1];
            }
            else {
                dp[start][end] = dp[start + 1][end] + dp[start][end - 1] - dp[start + 1][end - 1];
            }
        }
    }

    return dp[0][n - 1];
}

int main()
{
    int t;
    cout << "Enter number of testcases\n";
    cin >> t;
    
    while (t--) {
        string str;
        cout << "Enter the input string\n";
        cin >> str;
    
        cout << "Total Number of palindromic Subsequences are: " << countPS(str) << endl;
    }
    
    return 0;
}

Output:

输出:

Enter number of testcases
2
Enter the input string
aaaa
Total Number of palindromic Subsequences are: 15
Enter the input string
abaaba
Total Number of palindromic Subsequences are: 31


翻译自: https://www.includehelp.com/icp/count-total-number-of-palindromic-subsequences.aspx

回文子序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值