线性回归 python
Python-线性回归 (Python - Linear Regression)
In Linear Regression these two variables are related through an equation, where exponent (power) of both these variables is 1. Mathematically a linear relationship represents a straight line when plotted as a graph. A non-linear relationship where the exponent of any variable is not equal to 1 creates a curve.
在线性回归中,这两个变量通过一个方程式关联,其中两个变量的指数(幂)为1。数学上,线性关系表示为曲线图时表示一条直线。 任何变量的指数不等于1的非线性关系会创建一条曲线。
The functions in Seaborn to find the linear regression relationship is regplot. The below example shows its use.
Seaborn中找到线性回归关系的函数是regplot。 以下示例显示了其用法。
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('tips')
sb.regplot(x = "total_bill", y = "tip", data = df)
plt.show()
Its output is as follows −
其输出如下-
翻译自: https://www.tutorialspoint.com/python_data_science/python_linear_regression.htm
线性回归 python