聚类算法-分层聚类

聚类算法-分层聚类 (Clustering Algorithms - Hierarchical Clustering)

层次聚类简介 (Introduction to Hierarchical Clustering)

Hierarchical clustering is another unsupervised learning algorithm that is used to group together the unlabeled data points having similar characteristics. Hierarchical clustering algorithms falls into following two categories −

分层聚类是另一种无监督的学习算法,用于将具有相似特征的未标记数据点分组在一起。 分层聚类算法分为以下两类-

Agglomerative hierarchical algorithms − In agglomerative hierarchical algorithms, each data point is treated as a single cluster and then successively merge or agglomerate (bottom-up approach) the pairs of clusters. The hierarchy of the clusters is represented as a dendrogram or tree structure.

聚集层次算法 -在聚集层次算法中,每个数据点都被视为单个群集,然后连续合并或聚集(自下而上)群集对。 群集的层次结构表示为树状图或树结构。

Divisive hierarchical algorithms − On the other hand, in divisive hierarchical algorithms, all the data points are treated as one big cluster and the process of clustering involves dividing (Top-down approach) the one big cluster into various small clusters.

分开的分层算法 -另一方面,在分开的分层算法中,所有数据点都被视为一个大群集,并且群集过程涉及将(一个自上而下的方法)将一个大群集划分为各种小群集。

执行聚集层次聚类的步骤 (Steps to Perform Agglomerative Hierarchical Clustering)

We are going to explain the most used and important Hierarchical clustering i.e. agglomerative. The steps to perform the same is as follows −

我们将解释最常用和最重要的层次聚类,即聚类。 执行相同的步骤如下-

  • Step 1 − Treat each data point as single cluster. Hence, we will be having, say K clusters at start. The number of data points will also be K at start.

    步骤1-将每个数据点视为单个群集。 因此,开始时我们将拥有K个群集。 开始时,数据点的数量也将为K。

  • Step 2 − Now, in this step we need to form a big cluster by joining two closet datapoints. This will result in total of K-1 clusters.

    步骤2-现在

  • 4
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值