T1 签到题,这回是真的
题面
给定一张 m 条边,n 个顶点组成的无向图 G ,顶点从 1 到 n 依次标号,保证 G 中 任意两点均可互相到达。现需要给 G 中尽量多的边指定方向,构成一张新的混合图 G′,使得 G′ 中任意两点 仍均可达。
思路
复习(copy)Tarjan。
桥不能有方向,其他边都有方向。方向就是搜索的方向。
T2 hard problem with water data
题面
给定n个正整数ai,选若干个数,保证这些数两两互质,求选择数的数量的最大值。
(n,ai∈[1,1000])
思路
我的错误思路:
若两数冲突就在两数间连一条边,问题转化为NPC问题(蚌埠住了)。NPC问题到目前为止尚未找到任何多项式的时间解法,所以这是一个由特殊向一般,由简单向复杂的转化(我是傻逼)。
正确思路:
不妨以质数为标准去查找,即同一个质数的倍数不能同时被选。考虑dp。状态是哪些质数被选了,若当前枚举的数不含已选的质数,则可以转移。由于n很小,考虑状压。31<√1000<37,所以同一个数可能含有多个小于等于31的质因数,但只能含有一个大于31的质因数,那么31以上的(大质数)不必压缩(想压也压不了)。那么把小质数和大质数分开处理。
小质数:f[i][j]
表示前i个数,可选质数的状态为j。
大质数:用分组背包,每个大质数的倍数为一组,每组只能选一个。
我嫖的光巨的代码(他应该看不到吧)
#include<bits/stdc++.h>
using namespace std;
template <typename T>inline void re(T &x) {
int f=1;
x=0;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=-f;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^48);
x*=f;
return;
}
template <typename T>void wr(T x) {
if(x<0) putchar('-'),x=-x;
if(x>9) wr(x/10);
putchar(x%10+'0');
return;
}
int T,n;
int a[1005];
int b[1005];
const int prime[15]= {2,3,5,7,11,13,17,19,23,29,31};
const int N=11;
int f[1005][1<<11];
bool vis[1005];
vector<int>t[1001];
const int maxn=(1<<11)-1;
signed main() {
freopen("multiply11.in","r",stdin);
freopen("multiply11.out","w",stdout);
re(T);
while(T--) {
for(register int i=1; i<=1000; ++i) if(t[i].size()) t[i].clear();
memset(vis,0,sizeof vis);
memset(b,0,sizeof b);
memset(f,0,sizeof f);
re(n);
for(register int i=1; i<=n; ++i) re(a[i]);
for(register int i=1; i<=n; ++i) {
for(register int j=0; j<N; ++j) {
if(a[i]%prime[j]==0) b[i]|=(1<<j);
while(a[i]%prime[j]==0) a[i]/=prime[j];
}
if(a[i]!=1) vis[i]=1,t[a[i]].push_back(i);
}
register int now=0;
for(register int i=1; i<=n; ++i) {
if(vis[i]) continue;
++now;
memcpy(f[now],f[now-1],sizeof f[now]);
for(register int S=(~b[i])&maxn,s=S; s; s=(s-1)&S) {
f[now][s|b[i]]=max(f[now][s|b[i]],f[now-1][s]+1);
}
f[now][b[i]]=max(f[now][b[i]],f[now-1][0]+1);
}
for(register int i=1; i<=1000; ++i) {
if(!t[i].size()) continue;
++now;
memcpy(f[now],f[now-1],sizeof f[now]);
for(register int k=0; k<t[i].size(); ++k) {
register int v=t[i][k];
for(register int S=(~b[v])&maxn,s=S; s; s=(s-1)&S) {
f[now][s|b[v]]=max(f[now][s|b[v]],f[now-1][s]+1);
}
f[now][b[v]]=max(f[now][b[v]],f[now-1][0]+1);
}
}
register int ans=0;
for(register int i=0; i<=maxn; ++i) {
ans=max(ans,f[now][i]);
}
wr(ans);
putchar('\n');
}
return 0;
}
/*
3
5
6 7 8 9 10
4
699 932 233 466
5
74 52 8 39 37
1
3
5 15 3
1
3
2 6 3
*/