1108题解

本文介绍了两个算法题目,涉及图的无向边定向和最大互质子集选择。第一题通过Tarjan算法判断桥,并确定边的方向;第二题利用数论中的互质性质,结合动态规划解决最大数量的选择。代码实现中包含状态转移方程和分治策略,适合进阶学习。
摘要由CSDN通过智能技术生成

T1 签到题,这回是真的

题面

给定一张 m 条边,n 个顶点组成的无向图 G ,顶点从 1 到 n 依次标号,保证 G 中 任意两点均可互相到达。现需要给 G 中尽量多的边指定方向,构成一张新的混合图 G′,使得 G′ 中任意两点 仍均可达。

思路

复习(copy)Tarjan。

桥不能有方向,其他边都有方向。方向就是搜索的方向。

T2 hard problem with water data

题面

给定n个正整数ai,选若干个数,保证这些数两两互质,求选择数的数量的最大值。

(n,ai∈[1,1000])

思路

我的错误思路:

若两数冲突就在两数间连一条边,问题转化为NPC问题(蚌埠住了)。NPC问题到目前为止尚未找到任何多项式的时间解法,所以这是一个由特殊向一般,由简单向复杂的转化(我是傻逼)。

正确思路:

不妨以质数为标准去查找,即同一个质数的倍数不能同时被选。考虑dp。状态是哪些质数被选了,若当前枚举的数不含已选的质数,则可以转移。由于n很小,考虑状压。31<√1000<37,所以同一个数可能含有多个小于等于31的质因数,但只能含有一个大于31的质因数,那么31以上的(大质数)不必压缩(想压也压不了)。那么把小质数和大质数分开处理。

小质数:f[i][j]表示前i个数,可选质数的状态为j。

大质数:用分组背包,每个大质数的倍数为一组,每组只能选一个。

我嫖的光巨的代码(他应该看不到吧)

#include<bits/stdc++.h>
using namespace std;
template <typename T>inline void re(T &x) {
	int f=1;
	x=0;
	char c=getchar();
	for(; !isdigit(c); c=getchar()) if(c=='-') f=-f;
	for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^48);
	x*=f;
	return;
}
template <typename T>void wr(T x) {
	if(x<0) putchar('-'),x=-x;
	if(x>9) wr(x/10);
	putchar(x%10+'0');
	return;
}
int T,n;
int a[1005];
int b[1005];
const int prime[15]= {2,3,5,7,11,13,17,19,23,29,31};
const int N=11;
int f[1005][1<<11];
bool vis[1005];
vector<int>t[1001];
const int maxn=(1<<11)-1;
signed main() {
	freopen("multiply11.in","r",stdin);
	freopen("multiply11.out","w",stdout);
	re(T);
	while(T--) {
		for(register int i=1; i<=1000; ++i) if(t[i].size()) t[i].clear();
		memset(vis,0,sizeof vis);
		memset(b,0,sizeof b);
		memset(f,0,sizeof f);
		re(n);
		for(register int i=1; i<=n; ++i) re(a[i]);
		for(register int i=1; i<=n; ++i) {
			for(register int j=0; j<N; ++j) {
				if(a[i]%prime[j]==0) b[i]|=(1<<j);
				while(a[i]%prime[j]==0) a[i]/=prime[j];
			}
			if(a[i]!=1) vis[i]=1,t[a[i]].push_back(i);
		}
		register int now=0;
		for(register int i=1; i<=n; ++i) {
			if(vis[i]) continue;
			++now;
			memcpy(f[now],f[now-1],sizeof f[now]);
			for(register int S=(~b[i])&maxn,s=S; s; s=(s-1)&S) {
				f[now][s|b[i]]=max(f[now][s|b[i]],f[now-1][s]+1);
			}
			f[now][b[i]]=max(f[now][b[i]],f[now-1][0]+1);
		}
		for(register int i=1; i<=1000; ++i) {
			if(!t[i].size()) continue;
			++now;
			memcpy(f[now],f[now-1],sizeof f[now]);
			for(register int k=0; k<t[i].size(); ++k) {
				register int v=t[i][k];
				for(register int S=(~b[v])&maxn,s=S; s; s=(s-1)&S) {
					f[now][s|b[v]]=max(f[now][s|b[v]],f[now-1][s]+1);
				}
				f[now][b[v]]=max(f[now][b[v]],f[now-1][0]+1);
			}
		}
		register int ans=0;
		for(register int i=0; i<=maxn; ++i) {
			ans=max(ans,f[now][i]);
		}
		wr(ans);
		putchar('\n');
	}
	return 0;
}
/*
3
5
6 7 8 9 10
4
699 932 233 466
5
74 52 8 39 37

1
3
5 15 3

1
3
2 6 3
*/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值