遇到这样的男人,请把自己嫁了

记得你的生日,鞋号,密码,最怕的事。

逛街时你看中同一款式三种颜色的裙子,他说:都试一遍好了。

指甲整齐干净,喜欢你替他剪指甲。

告诉你——24小时随时打电话给他。
重大的事情和你商量,比如明年的投资计划,周末野餐带不带烧烤架,晚上吃大白菜还是小白菜。

吃你吃剩的东西。

有点害羞,但曾在分别街头,大声说我爱你。

同你去庙里求签,轻轻抓住你的手一同跪下。

言而有信。

从来不迟到——你迟到他不生气。

拥抱很久,很紧——每次你起身时几乎是需要慢慢推开他

睡的比你迟一点,醒来早一点。

朦胧醒来轻呼你的名字——没有呼错。

你很怕虫子,见到虫子大声尖叫他不会笑你。

笑起来很像个坏蛋——其实不是。

帮你做家务,每天,边做边聊天。

常常帮助别人,没有为什么。

答应你,永远不,然后永远不。

一边吹口哨一边修马桶。

说:希望你是他的女儿。

雨天散步背你过积水,说:你还可以再胖一些啊。

吵嘴时不会一走了之。

错了会认错,是真的认识到错在哪里

阅读女士脱毛器的说明书然后教你怎么用。

你说笑话他笑。

试鞋时,他把你的卡通袜叠好塞进上衣口袋。

常常说,有我呢。

你做的菜他每样都爱吃,要求明天再做。

轻轻拧开你拧不开的汽水瓶。

忙时给你订机票,让你带父母一起出去玩。

告诉你——不要省钱。

留言时画上一个小老虎头当签名。

偶尔叫你妈妈。

说谎时结巴。

与人争论像是在解释。

从不上网聊天

送你的花是盆花,替你浇水。

和你下棋,允许你悔棋。

他其实很早就对他的父母说起你。

喜欢运动,带你去女子健身俱乐部。

穿十年前的牛仔裤仍然合身。

吵架时你要他还给你送给他的维尼熊,他坚决不还。

你失眠时他陪你聊天。

你洗澡时他拿了本杂志进来坐在马桶上念。

比你高,你取不到的东西让他取。

在商店的洗手间外面等你。

你感冒了,他还是会用你的杯子喝水。

会打电话对你嚷:我办公室的热带鱼生小鱼了。

和大人在一起像大人,和孩子在一起像孩子,和狗在一起像狗。

喜欢你,从未犹豫,从不把你和别的女人比较。

常常央求你唱一首歌。

你买给他的东西都合他的心。

身上的味道很好闻,但他自己不知道。

逛街回家,一只眼看电视球赛,一只眼看你试新衣。

对女人有风度,也有距离。

很少叹气。

真的可以随时找到他。

和他在一起不怕死——也不害怕活下去。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值