证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解。

证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解。


备注:等待求解

这个问题可以使用费马大定理进行证明。费马大定理指出,对于任意大于2的自然数n,任意整数a、b、c,满足a^n+b^n=c^n的正整数不存在。 首先,我们需要证明当n为偶数方程a^n+b^n=c^n无正整数。假设存在正整数a、b、c,满足a^n+b^n=c^n,其中n为偶数。根据费马小定理,a、b、c中至少有一个数能被n整除,不妨设c能被n整除。那么我们可以将方程两边同除以c^n,得到(a/c)^n + (b/c)^n = 1。 由于n为偶数,所以(a/c)^n和(b/c)^n都是正数。根据柯西-施瓦茨不等式,有: (a/c)^n + (b/c)^n >= [(a/c)^(n/2) + (b/c)^(n/2)]^2 又因为1 = (a/c)^n + (b/c)^n <= 2[(a/c)^(n/2) + (b/c)^(n/2)]^2,所以(a/c)^(n/2) + (b/c)^(n/2) >= 1/√2。但是由于n >= 2,所以√2 < 2^(n/2),因此(a/c)^(n/2) + (b/c)^(n/2) > 1/2。根据这个不等式,我们可以得到: (a/c)^n + (b/c)^n >= 2[(a/c)^(n/2) + (b/c)^(n/2)]^2 > 1 这与(a/c)^n + (b/c)^n = 1矛盾,因此偶数n方程正整数。 接下来,我们需要证明当n为奇数方程a^n+b^n=c^n无正整数。假设存在正整数a、b、c,满足a^n+b^n=c^n,其中n为奇数。根据费马小定理,a、b、c中至少有一个数能被n整除,不妨设c能被n整除。那么我们可以将方程两边同除以c^n,得到(a/c)^n + (b/c)^n = 1。 由于n为奇数,所以(a/c)^n和(b/c)^n都是正数。根据柯西-施瓦茨不等式,有: (a/c)^n + (b/c)^n >= [(a/c)^((n-1)/2) + (b/c)^((n-1)/2)]^2 又因为1 = (a/c)^n + (b/c)^n <= 2[(a/c)^((n-1)/2) + (b/c)^((n-1)/2)]^2,所以(a/c)^((n-1)/2) + (b/c)^((n-1)/2) >= 1/√2。但是由于n为奇数,所以√2 < 2^((n-1)/2),因此(a/c)^((n-1)/2) + (b/c)^((n-1)/2) > 1/2。根据这个不等式,我们可以得到: (a/c)^n + (b/c)^n >= 2[(a/c)^((n-1)/2) + (b/c)^((n-1)/2)]^2 > 1 这与(a/c)^n + (b/c)^n = 1矛盾,因此奇数n方程正整数。 综上所述,对于任意大于2的自然数n,任意整数a、b、c,满足a^n+b^n=c^n的正整数不存在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值