雷总不割韭菜,小米站在上帝视角重新定义了自动驾驶和体验

小米汽车首款C级轿跑亮相,展示自研电机、电池及智能驾驶技术,预计2024年量产。同时,小米汽车的研发投入和生态优势对竞品构成威胁,自动驾驶技术团队规模大,目标达到顶级水平。文章还推荐了自动驾驶之心知识星球作为专业学习社区。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

12月28日,小米汽车技术发布会正式开始,其中小米汽车首款SU7亮相,定位C级轿跑,2024年计划量产上市。不得不说,车型非常漂亮,雷总前面就说压上了整个身家最后搏一把,希望小米汽车能够媲美保时捷和国外其它知名品牌,现在来看,成功的可能性非常大了。

4170bc75c22df999d375c0e749c7b8b1.jpeg

小米汽车研发投入超过百亿,发布会上看到了遥遥领先的自研电机、电池以及其它机械制作技术。在生态搭建上,无缝对接小米系列移动端设备,操作汽车像操作手机一样方便,不得不说,它的存在直接让蔚小理和华为的产品受到了很大威胁,BBA的体验感更是垂直下降。在智能驾驶方面,团队规模近1000人,采用Orin芯片,测试历程超越1000w公里,2024年争取技术达到第一梯队水平。说到这,很多小米的同学找我吐槽,是真卷,但技术也是真的不错,智能驾驶和智能座舱功能不输当下top。看到这里,真是感慨,自动驾驶的春天要熬出来了,如果从2010年开始算起,近14年的密集投入研发也陆陆续续都有了回报,大家继续加油!

对自动驾驶来说,依然是那个老生常谈的话,现在是最好的时代,也是最坏的时代,什么时候入局不是绝对重要的,能做的好才是核心竞争力。有能力的同学站在自动驾驶的风口乘风破浪,前途一片光明;能力还不足够的小伙伴,依旧会感觉到吃力,其实这也正常,如果没有强大的团队支撑,个人的成长极其缓慢。如何持续保持跟进和输入呢?我的答案是找对圈子,让你每天能够主动和被动接受很多新的知识,包括领域知识体系的梳理、刷题、面试经验、各家企业现状、各个岗位的具体职责以及后续的职业前景等。一个人入门学习,无异于大海捞针,浪费了大把时间踩坑,还得不到想要的答案。哪里有专业回答的规划呢?这里我推荐一个我们一直在维护的社区:自动驾驶之心知识星球,目前是国内最大、最专业的自动驾驶社区。

2024新年优惠券

7945a4af20fe045a9b50712e3fa50cd6.png

元旦后星球价格提升至359

国内最大的自动驾驶社区

自动驾驶之心知识星球,创办于2022年7月份,致力于打造为自动驾驶行业中的 ”黄埔军校“,目前近2400人,聚集了近50+自动驾驶行业专家为大家答疑解惑。

星球内已经打磨出近30+的学习路线,涉及BEV感知、动态/静态障碍物检测、多传感器融合、多传感器标定、目标跟踪、模型部署与cuda加速、仿真等方向,沉淀了大量工程上的解决方案、学术上的优化思路!星球主要内容一览:

1d652f5944702be15b7d493156c11f72.png

126c0f3f359390e847d5b02bac7ee51f.png

最前沿的视频分享

除了日常的文档、学习路线、问答分享,星球内部会不定期邀请CVPR、ICCV、ECCV、NIPS、TPAMI等各类顶会顶刊作者以及国内外各大顶尖自动驾驶公司团队前来直播分享,就死磕两件事,如何量产和research研究方向,非常适合工业界和学术界的小伙伴!

视频直播内部每周1~2次,每年计划100场左右。

ef8b9c2a4c488d3b559fa58e8c3d7a69.png

星球每天的讨论有哪些?

自动驾驶之心知识星球的定位是直接面向工业界和量产,所以这里有很多工作上遇到的问题,比如如何处理视觉感知误检问题、如何轻量化BEVFusion和Occ模型、如何优化在线高精地图模型、如何使用TensorRT部署自己的模型;除此之外,我们做到了国内外自动驾驶工作的实时更新,最新工作3天内将会在星球内公布,一起讨论后半年甚至下一年的方向动态,一切为了实用。

c372240dc0dcf282c7924154820e2720.png

更为重磅的是,我们保证了当天必须解决大家的问题,星球的几个创始人都是行业的算法专家,基本cover住所有子方向,除此之外,更有50+的算法开发专家一起讨论,你踩过的坑我们前面都踩过。

c76ce51dd6fefe9c92d778e29465186f.png

星球成员

星球成员主要来自AI Lab、商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、赢彻科技、图森未来、智加科技、AutoX、大疆、上汽、集度、地平线、蔚来、小鹏、蘑菇车联、斑马、华为等业界知名公司,以及苏黎世理工、卡耐基梅隆大学、普渡大学、东京大学、香港中文大学、香港科技大学、香港大学、清华大学、上海交大、复旦大学、浙江大学、中科大、南京大学、东南大学、同济大学、上海科技大学、哈工大等国内外知名高校;

ea175d389b13eb87cfba9fe2b511bb74.png

星球会员权益

1、免费获得50+专业嘉宾的答疑解惑(有问必答)

2、永久免费浏览、下载星球内容(目前3600+干货内容,每天更新,会员过期后,过期前的内容可继续免费浏览下载)

3、所有自动驾驶之心的付费课程8折优惠(价值1500元)

4、直播视频免费无限期回放(50+场行业直播,一年近100场)

5、星球积分榜前10名,获得丰富现金奖励

6、免费咨询求职招聘相关问题

7、加入专属VIP群,获得最新资讯

最近星球的一些新变化

1、持续邀请重磅嘉宾加入(星球已有50+名行业内各方向嘉宾,为大家答疑解惑)

8bcd8ef20d7690093b1cd2cbfb91cfb5.png

ee3b57532723307c2c6af7098394544a.png

2、行业直播干货视频第一时间分享(直播当天完整版回放就上传星球

e3bb2043b2f6786fba2210df9118db2c.png581c81179c48f09e4e7486704fe64bf1.png

3、视频学习材料干货分享(干货知识点讲解)

3e1f6ba1bfa1e494cd285d7ec94abfad.jpegf35c475b2bea620a866001774b6a0a05.png

4、每天问题讨论(自动驾驶一百问系列,实用问题星球内一起讨论)

34151f6289ae7e8cf21ab436ad3ae63d.png

ed522ac84eb6d1dd5a8275489c7ac585.png

429d2b42b4541358d6ab611a98eee6d3.png

3f36b7407f6820f2ac624f2428d38e4b.png

5、代码干货推荐(最新实用代码分享)

260dfe0a3add8ececb855ff91820d066.png

6、问答释疑

8c0ee568b01d6a5ed79a040ae342de38.png

7、经典书籍分享

edeca825b4a99d42d1e9f82e8bbacc99.png

自动驾驶之心知识星球

自动驾驶之心知识星球是首个以自动驾驶技术栈为主线的交流学习社区,这是一个前沿技术发布和学习的地方!我们汇总了自动驾驶感知(分类、目标检测、语义分割、实例分割、全景分割、关键点检测、车道线检测、3D感知、目标跟踪、多模态、多传感器融合等)、自动驾驶定位建图(高精地图、SLAM)、自动驾驶规划控制、领域技术方案、AI模型部署落地等几乎所有子方向的学习路线!除此之外,还和数十家自动驾驶公司建立了内推渠道,简历直达!这里可以自由提问交流,许多算法工程师和硕博日常活跃,解决问题!初衷是希望能够汇集行业大佬的智慧,在学习和就业上帮到大家!星球的每周活跃度都在前50内,非常注重大家积极性的调度和讨论,欢迎加入一起成长!

知识星球有哪些模块?

CV图文教程:网络结构可视化、算法原理图解;

视频教程:星球内部技术分享视频完成了几十场技术直播分享,包括语义分割、毫米波雷达视觉融合、BEV感知、Occupancy、多传感器标定、传感器部署、高精地图制作关键技术、规划控制、轨迹预测、自动驾驶行业与求职分析、自动驾驶仿真等多个方向(星球内部观看)!以及优秀开源课程,涉及相机标定、伯克利深度学习与计算机视觉、百度优达学城、Apollo自动驾驶、Udacity自动驾驶、MIT自动驾驶、Carla自动驾驶仿真等系列视频课程;

01b4aaf29f300c7fdf90a15a46bb46b9.png

日常paper分享:BEV感知、3D目标检测、多模态融合、2D检测、分割、车道线、多任务学习、多目标跟踪、传感器空间和时间同步、鱼眼感知与模型、轨迹预测、高精地图、SLAM、规划控制、V2X、Occupancy network、NerF、测速测距、强化学习、VIT、轻量化等;

职位与面经分享:自动驾驶行业职位内推、面经分享、入门学习路线分享;

日常问答交流:和嘉宾星主交流领域学术工业最新进展,包括领域方案、工程实战问题、学术界前沿动态;

108766c55094c60c413ecba508e56167.png

主要面向对象

星球创建的初衷是为了给自动驾驶行业提供一个技术交流平台,包括需要入门的在校本科/硕士/博士生,以及想要转行或者进阶的算法工程人员;除此之外,我们还和许多公司建立了校招/社招内推,包括地平线、百度、蔚来汽车、momenta、赢彻科技、集度、滴滴、Nvidia、高通、纵目科技、魔视智能、斑马汽车、博世、纽劢科技、追势科技、寒武纪等!

如果您是自动驾驶和AI公司的创始人、高管、产品经理、运营人员或者数据/高精地图相关公司,也非常欢迎加入,资源的对接与引进也是我们一直在推动的!我们坚信自动驾驶能够改变人类未来出行,想要加入该行业推动社会进步的小伙伴们,星球内部准备了基础到进阶模块,算法讲解+代码实现,轻松搞定学习!

星球主要关注方向

0.自动驾驶顶会与公司

星球内部为大家汇总了CVPR、ECCV、IROS、RSS、TPAMI、IV、ICIP等自动驾驶领域顶会和顶刊,以及图森、智加、主线科技、集度、滴滴、纵目、元戎启行、momenta、蔚来小鹏理想等近80家公司介绍(可以内推!)

1. 计算机视觉相关数据集

数据集是AI任务的基石,然而大多数数据集都是国外机构开源,数据量较大,下载速度缓慢,这两个缺点导致很多研究人员在数据获取上为难,为此星球内部已经为大家准备了近30种计算机视觉和自动驾驶相关数据集,包括KITTI、Waymo Open Dataset、Lyft L5、COCO、Semantic3D、A2D2数据集、车道线数据集、车牌数据集、行人检测数据集、红绿灯检测数据集等,一键下载;

00dc7c1806b4dca3ffe63fd7f5be90e2.png

2. 2D/3D标定工具与仿真

星球内部为大家汇总了2D检测、3D点云检测、语义分割、实例分割、3D点云分割、视频检测、交互标定、多传感器标定等工具,还有各类仿真框架,可以快速适配到自己项目中。

9e76739b62f90acc6f7ccb94c02baff5.png

3. 基础学习资料

整理了从自动驾驶感知、跟踪、滤波专业算法技术,到深度学习数学基础和图像处理、经典计算机视觉算法、Opencv、Pytorch以及C++、Python、GPU和Cuda近50本pdf学习资料!

5053bea04085f20f4030376b8f5b9596.png

7800831adcb327826b80e6f90ae38ebf.png

6a3d335adf34deae1304484415eafa60.png

a32ff97d70d68580d1b4484397ce712e.png

4.  Backbone与Transformer

主要关注常用的轻量化、高性能backbone,以及视觉transformer结构与优化;

6607fae1ca0300261c22fc3966ba2bb6.png

5.  2D目标检测

关注anchor-based、anchor-free、one-stage、two-stage、超全YOLO系列、小目标检测、多任务模型、长尾分布、误检消除、难例挖掘、定位精度优化等内容;该模块汇总检测领域的经典综述和论文,从结构、数据增强策略、采样策略、不均衡问题、半监督、知识蒸馏上展开研究;

0d82580767a3454cca53b7086e9f59be.png 3fd6070f0bd2485cf52c74d00afaaf42.png 447f87a80e24fa11cbf135c8cc05fa51.png d6b57068f85f860222fa30421dad083d.png

6.  分割任务

汇总了常见的2D语义分割、实例分割、全景分割以及3D点云分割SOTA算法,并对分割任务中的边缘轮廓分割模糊不细腻问题展开讨论;

f4fadd3b1b90c2423c37874356e1b2c7.png 35fe0c0b22b5d99fbb45c4a04b4434f0.png

7.车道线检测

对基于检测、分割、分类、关键点、曲线预测、多传感器检测、3D车道线SOTA方法进行了汇总,对车道线遮挡、磨损、不连续问题展开了讨论!

2ae46a392fcc33c1b1366220ada8efb8.png

8.鱼眼感知

针对鱼眼和全景相机在自动泊车、近域感知上的应用展开,主要包括相机标定、鱼眼全景相机系统、自动泊车系统、环视数据集、鱼眼深度估计、鱼眼目标检测、鱼眼SLAM、语义分割等方向!

984cad9ce6ecbfd208598aac8d90958d.png c58fe45996172a5b25f13b73d9c44d2b.png fbf4e83e340ff2d03736666357b7cb3b.png

9.目标跟踪

针对单目标和多目标跟踪,基于Siamese Network、Tracking-by-detection、传统滤波+关联算法、end2end等方法进行全面展开阐述,后续更会加入变速情况下的跟踪系统;

3fe57536465902702aba1edc35535c4f.png 3570b788b80a04d7e7c6ca7ee846d007.png

10.3D目标检测

从点云和多模态数据3D检测任务展开,基于BEV、点、体素、多camera数据的3D检测方案;

04c490a6630adaee635408c4e38c8637.png b12ba7a51b15ab5e43a62b982a32e5a7.png 50117eaa98f90684582d0f3146cf71dc.png c2c9fd5ca69ea83ae2aeabe32fc50601.png d55272c0fd2b8b11a9cc6d48c027e72f.png

11.传感器标定

主要关注自动驾驶领域常见的Camera、Lidar、Radar、IMU之间的离线、在线标定,多相机、多激光雷达之间的标定,自动标定,传感器时间同步等;

d40f032064565e09453a55e3ffc7cb01.png

1a4d3e6758a7827fd90496a218c3624a.png

bdac7a5b3a5f593f71c22aa8c1f3b83f.png

d192e90b0c4dd9452e8d8bcd268e676d.png

e9940c6214eb523584d5dd1952d46444.png

12.多传感器融合

星球内部汇总了数据级融合、目标级融合、特征级融合、弱融合、不对称融合等多种方案!

0a2e635d28e648f2f257b342cbc03be1.png

eb615426df826fbe36ce2ad0d84acee5.png

88cb76c36dffbebc9ac7726117372084.png

d26e90c15cde4aacbb7571df209fe78a.png

13.SLAM与高精地图

汇总了单目SLAM、RGB-D SLAM、激光SLAM、毫米波SLAM、高精地图定位方法、自定位方法!以及领域内最常用的高精地图制作方法!

a4c909d5596c0a33659d2e8ecdcaf92c.png

9471cd86047645f4c73c186a6aeb0a2a.png

592a74a7a7f10e99ab835581146de589.png

a99d4ff1e46bd7111177eed404d8447e.png

1435bdafa666d33c65fd929d3a969ad8.png

1c09dd861da74aad1f0133cb593c1c48.png

14.模型压缩与轻量化

汇总了模型压缩、裁剪、量化、权值共享、模型加速、知识蒸馏、量化工具等数十篇干货介绍!

15.模型部署

TensorRT、NCNN、Opencv、MNN方案部署检测、分割、关键点、分类模型实战;

fc78e150a8813c31fd83e5c814537b4e.png

16.轨迹预测

重点关注行人、车辆、基于机器学习、深度学习、强化学习方式的预测!

40708dea1380bccdd2d62e761f9a34d7.png

17.规划控制

涵盖所有的规划控制方法,重点关注行车、泊车、机器人等应用领域!

c44d8769ddc22533ad44e76d70882933.png

359fc06cb8dd065b89cdce0fb5afac29.png

18. 大模型与自动驾驶

涵盖通用领域大模型和自动驾驶垂直行业大模型,经典算法与应用应有尽有!

19. 端到端自动驾驶

涵盖端到端自动驾驶最新综述、基于可解释性的端到端自动驾驶方法汇总、基于模仿学习的端到端自动驾驶任务汇总、基于行为克隆的端到端自动驾驶任务汇总、基于强化学习的端到端自动驾驶任务汇总、基于多任务学习的端到端自动驾驶任务、基于知识蒸馏的端到端自动驾驶任务汇总!

19.Nerf与自动驾驶

涵盖Nerf与自动驾驶的各类应用汇总!

20.其它

在感知定位融合之外,还汇总了Occupany network、测速测距、大量机器人、自动驾驶规划方法,强化学习在运动规划上的应用、V2X技术,以及图像加速CUDA方法等~

b5b3413e2fdfcdd96f1811f6db24cd7e.png

欢迎加入

欢迎大家扫码加入自动驾驶之心知识星球,我们诚邀前期成员的加入,一起创造一个全技术栈的自动驾驶开发者社区!星球成员的加入平均每天不到1元,欢迎扫码加入一起学习一起卷!

2024新年优惠券

15a4d5d3dd57fef8dc77704bc17e850d.png

元旦后星球价格提升至359

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值