车企里第一个:因为智驾,把钱退还给车主

作者 | 有车有据 编辑 | 智能车参考

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『自动驾驶』技术交流群

本文只做学术分享,如有侵权,联系删文

一辆带城区NOA,标配激光雷达的车,要卖多少钱?

“我觉着,怎么也得15万往上吧?”
15万?那是2024年!

11.98万起,五座家用SUV,还带冰箱彩电大沙发。

别急着惊讶,后续还能OTA车位到车位

甚至之前花钱开通高阶智驾的用户,现在统统退钱,史上头一回。

零跑算是研究透了中国年轻用户的购车心理:

不求品牌溢价,但求六边全能。

高阶智驾“价格屠夫”,体验如何?

零跑新车B10,创造的第一个纪录就是高阶智驾车型的“史低”售价:11.98万。

比亚迪推的全民智驾,下探比零跑更深到了7万元车型,但是,天神之眼C功能只覆盖高速NOA和自主泊车。

业内争议颇多,有观点认为高速NOA根本不能算“高阶”…….各位观众老爷可以在评论区畅所欲言。

且不管“高阶”争议,零跑B10的确是目前带城区NOA以及后续OTA车位到车位功能售价最低的车型。

你说还有五菱宝骏?那还必须加一个前提:标配激光雷达

零跑对高阶智驾的观点态度也就明确:高速NOA不算高阶,标配从城区NOA起。

反映到产品上,B10只有入门基础L2,和高阶智驾两个智驾SKU,不提供单独的高速NOA方案。

9.98万的入门款,是为了照顾预算的确有限的用户。

零跑B10的高阶智驾方案,总共27个传感器,包括1个激光雷达、11个摄像头、3个毫米波雷达、12个超声波雷达,底层高通8650智驾芯片。

其中激光雷达采用禾赛ATX,更强性能的同时,实现极致小巧和超低功耗:

高通8650芯片是零跑首发,4nm制程,具备200T稀疏算力,功耗较同级芯片低一半。

关键硬件选择上,可以看出零跑智驾体系的特征:轻。

算力轻、能耗轻、体积轻,自然,成本也就轻。

举个例子,零跑之前C系列采用的LEAP 3.0四叶草架构下,使用的是行业常见的英伟达Orin芯片,通常标注的是稠密算力200TOPS+。当然也能跑通端到端智驾模型。

多说一句,零跑官方向我们透露,和大多数玩家一样,零跑也在6-8个月时间内完成了端到端技术体系的切换。

所谓“端到端”,简单理解就是把驾驶全过程模型化、AI化,直接用人类成熟司机的驾驶数据去训练,理论上可以处理几乎所有复杂场景。而以往人工定义规则的系统靠“穷举法”,几乎无法应对庞大却复杂的博弈或异形障碍物。

体现在零跑B10上就是智驾体验更加“拟人”:

这个十字路场景下,有一块十分不规则的施工区域占据路口,零跑端到端高阶智驾不仅仅实现了绕行,而且巧妙地选择整个围栏区域外围绕行,符合交规,同时避免了对向盲区。

“拟人”还体现在避让动作上:

行人和电动车同时出现在转弯路口,但B10搭载的智驾系统刹车减速过程平缓顺滑,车内乘客没有丝毫“前俯后仰”。

规则主导的智驾系统也能避让,但有明确的“触发条件”,即目标进入车身周围某一范围内才会采取刹停措施,往往体验就很突兀。端到端的优势之一,就是系统会提前预判当前场景下各种目标的轨迹,然后不断实时修正自车的轨迹,避免条件反射式的驾驶行为。

这其实就是老司机常说的“防御性驾驶”。

紧急cut in场景,零跑端到端智驾也是在安全前提下尽量做到丝滑:

整套智能驾驶硬件系统,具备持续进化的能力,不仅可实现当前的城区智能领航,更可在未来升级到“车位到车位”的智驾功能。

以及,零跑端到端还有一个之前很少有玩家强调的优势:零接管之外,同时实现零违规:

特斯拉FSD落地中国后,这一点才引起大家重视。

因为端到端系统本质是通过数据“模仿”人类司机行为,能力上限高的同时,也代表着系统有可能为了通行效率学习错误的驾驶行为——下限也很低。

端到端体系下解决这个问题,只靠“大力出奇迹”喂数据是不行的。零跑给出的体验来看,在研发端至少已经深入到强化学习目标设置、高质量数据提炼等等颗粒度细致到代码级别的程度。

图片

零跑这套端到端方案,有一个不同点:底层采用高通8650智驾芯片,稀疏算力200T,而非行业通用的英伟达Orin。

零跑自述在工程实践中发现:

“两款芯片真正参与运算的部分,能力是相当的,单颗的8650作为智驾算力足够应对端到端”。

零跑能够对智驾底层硬件的做出定性判断,前提无论对英伟达还是高通,或者是市场上任何其他类型的智驾芯片,都有深入到架构级的理解。

具体来说,是考察芯片架构对以Transformer结构为基础的模型优化支持是否足够、能耗是否经济、后续能否支持更进一步的VLM、VLA等新范式大模型。

零跑CEO朱江明总结为:

智能驾驶技术迭代到现在,已经不再是供应商给什么,主机厂就用什么,而是主机厂能理解多少,就能发挥多少

所以,同样是端到端城区NOA,行业普遍需要数百TOPS以上、多个激光雷达的支持,搭载车型也止步15万以上。但零跑就可以在单激光雷达、算力200TOPS条件下左右落地,并且创造了13万内标配激光雷达加持下的城市NOA门槛新纪录。

图片

而且转向高通智驾芯片,让零跑领先一步推进舱驾一体中央域控:LEAP 3.5在域控层面实现了一体化,智驾的8650和智舱的8295共用一块电路板、一套通信协议、一套电源冷却系统。

降本还在其次,真正的优势在于后续VLA模型上车,零跑在大语言模型和端到端融合、智驾可视化、人机交互层面具备了先发优势。

同时还是“冰箱彩电大沙发”的价格屠夫

零跑B10的第二个纪录,就是家用5座SUV的售价“史低”了,因为10万级售价,市场上普遍是A级小车。

4.5米左右车长,和2730mm的轴距达到紧凑级SUV天花板,这个尺寸其实和公认的“大车”坦克300相当,只是B10车身高度上符合常规家用SUV的惯例,显得没越野车那么大。

不同车型配置中,除了9.98万的入门版,其他所有车型都标配彩电——14.6英寸2.5K中控大屏,以及零跑自研的Leapmotor OS 4.0系统,以及大沙发——前排座椅通风加热,电动的后视镜、尾门、全景天幕等等。

冰箱据说能选配,但官方未透露详细方案。

10万级,零跑把能给的全给了,甚至别人给不了的,零跑也给了。

比如车机座舱接入了通义千问、DeepSeek,无论是说方言、多人下指令、还是离线控制,都是“信手拈来”。

再比如10万级别标配高通8295座舱芯片,零跑是行业首家。

之前大家调侃零跑的成功秘诀是“半价理想”,甚至老板朱江明也不避讳。

这次的B10,可以理解成“半价L6”:

外观上第一感觉确实如此,包括前后贯穿式灯组设计和下保险杠的U型区域都像是理想L系列的等比例缩小。

内饰上则不再走理想风格,更像smart的内饰,大量的圆角矩形,而且还做了内凹式的前IP台,并且包括中央扶手也是那种悬浮岛式的。整个内饰设计圆润可爱,更契合年轻人的需求:

续航方面,有510km和600km两种规格,都是磷酸铁锂电池包,最快支持19分钟30%-80%的快充能力。

B10整车所有的配置,都是在成本压力和家用实用之间去一个最大公约数。

9.98万入门版履行“代步车”职责,功能配置一项不多,但实用性一点不少,照顾预算有限的用户。

剩下所有车型,配置、体验都是越级下放。

只有在智能化这一项功能上,零跑不吝成本,8295、8650、端到端算法、激光雷达、城区NOA应上尽上,且没有任何额外收费订阅。

这样的策略年轻用户认可吗?零跑也给出了证明:

B10上市1小时大定超过10000台,70%用户选择激光雷达智驾版。

One more thing

出乎所有人预料,过去的3月零跑悄然登顶新势力销冠。

“半价理想”策略大获成功,理想汽车本尊反而屈居第二。

零跑的成功,可能还体现在这一点:

B10上市是零跑高阶智驾标配的开端,但也没忘老用户。

之前所有付费开通高阶智驾的车主用户,花多少钱零跑悉数奉还,即刻到账

车企唯一。

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值