算法原理
文章平均质量分 78
u010842413
这个作者很懒,什么都没留下…
展开
-
逆分布函数法生成随机数(以指数分布和双指数分布为例)
前面在"C++均匀分布U(0,1)的随机数中”讲了如何在C++中生成均匀分布随机数,同时也提到了均匀分布的是其他随机数的生成基础,这里就来看看均匀分布在其他随机数生成中的重要作用吧,这里使用逆分布函数方法来说明: 我们知道,关于随机数的生成,许多编程语言都有对应的库支持(如:,原创 2014-03-16 14:56:19 · 23759 阅读 · 3 评论 -
继续随机数:接受/拒绝方法(标准正态分布)
前面在逆分布函数法生成随机数(以指数分布和双指数分布为例)中已经说道了逆分布函数方法生成随机数,理论上来说的话,对于任意的分布都是可以用逆分布函数的方法得到的,因为分布函数都是单调函数,也就是是说是可逆的,当然除了一些非常极端的情况,例如,函数虽然是递增的但是在某一段为常数,这时候求逆函数的话会面临一对多的情况,不过这里需要与离散的情况分开,离散的时候,分布函数是阶梯函数,此时其逆函数就会出现一对原创 2014-03-16 22:09:01 · 14774 阅读 · 0 评论 -
C++矩阵求逆及求数据动态增长的最小二乘中的(X‘X)^-1(一种容易实现的方式,包含详细的证明)
这是一篇关于用C++计算矩阵的逆的方法,是自己几天奋斗的结果,从有想法开始到详细的数学证明再到计算机程序的实现以及验证。废话就不多说了,按照我的习惯,这里还是先列出这篇文中的结果,方便对号入座,如不相关那就赶紧换一个把: 1.一种容易实现的矩阵求逆算法,且可以判断矩阵是否可逆; 2.这种算法支持数据的动态增长,例如,最小二乘中计算(X’X)^-1时当来一原创 2014-03-15 14:21:25 · 2617 阅读 · 0 评论