对象隐式转换,复制构造函数和重载等号运算符的区别

#include #include using namespace std; class A{ public: A(char* username) { cnt++; cout << cnt << endl; name ...

2017-06-20 00:04:31

阅读数 274

评论数 0

探讨int和unsigned能表示的最大的数和最小的数

http://blog.csdn.net/ajioy/article/details/7339527 一个 int 占4个字节,就是32个比特位,所以能表示的范围为-2^31~+2^31-1 2,147,483,647。 若是unsigned int,能表示的范围是0 ~ +2^3...

2017-02-15 17:54:19

阅读数 324

评论数 0

分词粒度

KTDictSeg 分词组件1.3版本 部分算法讨论 – 分词粒度 作者:肖波 http://www.cnblogs.com/eaglet/archive/2008/05/27/1208423.html KTDictSeg 分词组件1.3版本已经接近完成,只剩下最后的一点功能。在KT...

2017-02-14 20:04:10

阅读数 1260

评论数 0

C++类构造函数和初始化列表

http://www.cnblogs.com/BlueTzar/articles/1223169.html C++类构造函数初始化列表 构造函数初始化列表以一个冒号开始,接着是以逗号分隔的数据成员列表,每个数据成员后面跟一个放在括号中的初始化式。例如: class C...

2017-02-10 10:00:33

阅读数 200

评论数 0

正排索引(forward index)与倒排索引(inverted index)

一、正排索引(前向索引) 正排索引也称为"前向索引"。它是创建倒排索引的基础,具有以下字段。 (1)LocalId字段(表中简称"Lid"):表示一个文档的局部编号。 (2)WordId字段:表示文档分词后的编号,也可称为"索引词...

2017-02-09 10:44:06

阅读数 472

评论数 0

PageRank算法

转载自http://blog.csdn.net/hguisu/article/details/7996185 1. PageRank算法概述          PageRank,即网页排名,又称网页级别、Google左侧排名或佩奇排名。         是Google创始...

2017-02-08 17:36:59

阅读数 270

评论数 0

关于神经网络的一点理解

1.为什么使用神经网络因为在最简单的异或问题上,一个简单的线性分类器都搞不定了。而神经网络相当于多个线性分类边界的整合。具有更优秀的能力。 【异或问题】如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。 异或也叫半加运算,其运算法则相当于不带进位的二进制加法:二进...

2016-10-07 20:11:02

阅读数 384

评论数 0

Linux中的configure和make

在Linux中利用源码包安装软件最重要的就是要仔细阅读安装包当中的README  INSTALL两个说明文件,这两个文件会清楚的告诉你如何可以正确的完成这个软件的安装!          我们都知道源码包安装分为这么几个阶段, 1、  ./configure:“configure”会在你的系统...

2016-08-24 15:47:45

阅读数 242

评论数 0

word2vec中关于霍夫曼树的应用原理

看了word2vec中虽然对霍夫曼原理有所了解。但是没有找到使用霍夫曼编码的原理。 在google上搜到这篇文章,感觉写的很不错,果断转了http://xiaoquanzi.net/?p=156 2013年末,Google发布的word2vec引起了一帮人的热捧,各种兴奋。时至...

2016-08-22 14:11:07

阅读数 485

评论数 0

centos将Python从2.6升级到2.7的方法

http://blog.csdn.net/jcjc918/article/details/11022345#comments

2016-08-17 17:43:04

阅读数 195

评论数 0

caffe各层总结

转自http://www.myexception.cn/other/1828071.html 如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结。 ...

2016-08-12 15:04:06

阅读数 306

评论数 0

word2vec的细节理解

n-gram实际上是做了一个n-1阶的马尔科夫假设。【用的方法应该是贝叶斯的概率理论】word2vec是使用神经网络训练的一套概率语言模型。收入的参数是词向量。【这里的词向量应该是属于那种“onehot编码”的词向量吧?】。神经概率语言模型对于语料库C里的任意一个词w,将context(w)取为前...

2016-08-11 14:13:35

阅读数 411

评论数 0

机器学习排序之Learning to Rank简单介绍

PS:文章主要转载自CSDN大神hguisu的文章"机器学习排序":           http://blog.csdn.net/hguisu/article/details/7989489       最近需要完成课程作业——分布式排序学习系统.它是在M/R、Storm...

2016-07-29 10:11:09

阅读数 543

评论数 0

LR其实是可以做一下特征离散化的

今天听组里人聊天,说LR需要把特征离散化,但是GBDT并不需要把特征离散化;我很疑惑,我记得lr并不需要离散化啊。后来听他们说,LR更适合处理稀疏数据,那么把特征先离散化到4个特征维度(假设的),然后以后遇到这个特征的时候,实际上就是四个特征中的一个有值了。【实际上是做了一个哑变量处理】以下摘自知...

2016-07-29 09:48:47

阅读数 2748

评论数 0

LIBSVM与LIBLINEAR

## LIBSVM与LIBLINEAR(一) 在过去的十几年里,支持向量机(Support Vector Machines)应该算得上是机器学习领域影响力最大的算法了。而在SVM算法的各种实现工具中,由国立台湾大学林智仁老师开发的工具包LIBSVM,又无疑是影响力最大的。2011年LIBSVM...

2016-07-28 15:41:22

阅读数 580

评论数 0

浅谈利用逻辑回归来解决文本分类时的模型调优

http://blog.csdn.net/busycai/article/details/6159109 本文适合有少许文本分类实践经验的同学。1.什么是文本分类?简单点说,给定类别,将文本分到某个或某几个类别中。比如,一篇网页,判断它是体育类还是政治类还是娱乐类。当然网页比文本稍微复杂一些,需...

2016-07-28 13:33:23

阅读数 1007

评论数 0

移动零 【in_place的理解】

给一个数组 nums 写一个函数将 0 移动到数组的最后面,非零元素保持原数组的顺序 注意事项1.必须在原数组上操作 2.最小化操作数样例给出 nums = [0, 1, 0, 3, 12], 调用函数之后, nums = [1, 3, 12, 0, 0].解答对于这道题我最开始用的方法很快速...

2016-07-23 13:40:50

阅读数 877

评论数 0

汉字数字与阿拉伯数字的转换

网上看了许多说法,感觉这个事情本身不复杂,不过也没许多人嘴炮说得那么简单。想法谁都有,都觉得自己能实现,不过许多人“信誓旦旦”地把这个写了之后,发现会报各种各样的错误。在此我把代码写上,附上我的想法。1.区分各种项1.1 转换项这种最简单,1——一,2——二,以此类推。记住不要忘了0——零1.2 ...

2016-07-19 14:16:19

阅读数 1678

评论数 0

十进制,二进制的转换

今天没事儿刷了个题,本以为是十分easy的题目,结果结实把我恶心了一阵。。。就是一个简单的十进制二进制转换的问题二进制求和描述 笔记 数据 评测 给定两个二进制字符串,返回他们的和(用二进制表示)。您在真实的面试中是否遇到过这个题? Yes 样例 a = 11b = 1返回 10...

2016-07-14 21:32:12

阅读数 290

评论数 0

SGDClassifier和LR,SVM的区别

看了许多文献,以及最近的项目经验,终于真正地搞懂了LR。以前总听大家说,看你对机器学习搞得透彻不透彻,就看你逻辑回归理解得怎么样;自己是统计出身的我,一直很有自信,以为无非就是个极大似然估计,求那个似然函数的极大值而已。然而实际上,这个之中也有很多的说法在里面,比如,求参数的方法。在逻辑回归中,我...

2016-07-07 19:54:32

阅读数 9485

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭