pytorch学习
系统的学习和整理pytorch架构和使用
CVAIDL
这个作者很懒,什么都没留下…
展开
-
Pytorch学习:张量、自动微分和计算图
1)重温Numpy2)Pytorch中的张量:Tensor3)Pytorch自动微分器:Autograd4)自定义Autograd5)Pytorch计算图6)把计算图打包成layers: nn Module7)自动梯度更新器:Optim8)自定义Module9)动态计算图总的来说,Pytorch主要提供了两个主要特征:一个n维的张量,与numpy中的array类似,但可以在GPU上运算; 自动微分机制来训练一个神经网络;本文中,会通过一个包含ReLu激活函数的全连接神经网络来作为转载 2020-06-07 17:38:07 · 965 阅读 · 0 评论 -
pytorch学习(一)
1. 张量的创建和操作 创建为初始化矩阵,并初始化a = torch.empty(5, 3) #创建一个5*3的未初始化矩阵nn.init.zeros_(a) #初始化a为0nn.init.constant_(a, 3) # 初始化a为3nn.init.uniform_(a) #初始化为uniform分布 随机数矩阵torch.rand(5, 3) # 5*3 , [0, 1)的随机数torch.rand_like(m转载 2020-06-07 17:35:16 · 1154 阅读 · 0 评论