- 博客(7)
- 资源 (2)
- 收藏
- 关注
原创 深度学习之激活函数
1.0 sigmoid激活函数 函数表达式:f(x) = 1 / (1 + exp(-x)) 导数表达式:g(x) = f(x)*(1-f(x)) 函数图像: 特点: 1)反向传播算法求解梯度时要进行链式求导,即各个偏导数相乘。由sigmoid导数图像可以看出,当偏导数取值在两边接近0时,连乘得结果会导致所得结果无限接近0,即造成梯度消失现象。 2)幂运算复杂,训练时间长 3)输出非0均值,收敛慢 tensorflow语法: tf.nn.sigmoid(x) 2.0 Tanh函数 函数表达式:f(x) =
2020-07-27 10:15:40
1679
原创 深度学习入门---基于tensorflow2.0实现对鸢尾花数据多分类
背景: 1.环境:基于tensorflow 2.0 python 2.网络结构:单层全连接网络结构、4个输入结点,3个输出结点 3.训练损失函数:mse 4.评价指标:准确率 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_dat
2020-07-26 13:13:14
759
原创 深度学习<二>
本篇主要涉及深度学习中相关的数学知识 讲解的函数都是充分光滑的函数 1. 导数 1.1. 导数 严格定义: 假设如下图片:y轴是位移,x是时间,现在要求特定点的瞬时速度。直观上抠出任意时刻的一点得到的瞬时速度为0,但是如果任意时刻都为0的话,那么不就没有位置变化了吗?这个问题其实就是著名的飞矢不动悖论。 但我们知道单单抠出一个点来谈速度就是扯淡。因为根据速度的定义式:速度=位移/时间。所以对应单一时刻位移差为0,同时分母也为0,因此这个定义从数学上就没有意义可言。但是具体到研究该过程中速度变化状态,我们确
2020-07-14 23:00:30
266
原创 深度学习「一」
1. 感知机算法 以上就是从生物学界得到启发后抽象并发展提出的感知机(Perceptron)模型。 说明: 输入向量X的各维特征分量分别乘以各自的权值w,后在求和,添加偏置b,再喂入一个激活函数,得到分类的判定结果。这里的激活函数使用符号函数。 具体数学形式: ???? = ????1 ????1 + ????2 ????2 + ⋯+ ???????? ???????? + ???? 向量形式: ???? = ????????????+ ???? 添加线性函数: ???? = ????(????) = ??
2020-07-13 16:03:14
1048
原创 统计学习方法中GDBT简单实现
@[TOC]李航统计学习中GDBT的简单实现 import numpy as np import math import matplotlib.pyplot as plt # 准备数据 x = np.arange(1,11,1) threshold = np.linspace(1.5,9.5,num=9) y = np.array([5.56,5.70,5.91,6.40,6.80,7.05,8....
2020-04-28 16:37:12
240
原创 (超详细)启动eclipse提示找不到虚拟机解决办法
1.双击左键进入如下红框标注出来的文件 2.进入后文件内容如下: 3.在行首输入如下内容(1.必须分为两行2.第二行为本机系统中jdk具体安装路径,如果不知道怎么查看自身jdk安装路径,自行百度),保存,退出: 4.双击如下按钮,即可正常启动eclipse! ...
2020-04-02 23:05:01
4166
python机器学习实践指南
2019-03-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅