等级标准
- 掌握各种高级排序算法;
- 掌握对算法的时间效率进行分析的方法;
- 掌握基本的数论知识;
- 掌握常用的图论算法;
- 能够使用上述方法编写指定功能的正确完整的程序。
等级九
掌握用分治技术做算法设计的方法;
能够使用各种优化方法提高动态规划算法的优化;
能够设计比较复杂的贪心算法并进行算法正确性证明;
能够设计比较复杂的搜索算法,并对算法进行优化;
能够使用网络流算法解决实际问题;
能够对描述复杂的问题进行抽象和简化,并通过使用各种 算法予以解决。
等级十
高级数据结构与算法:涉及但不限于随机算法、近似算法、神经网络算法、深度 学习算法、强化学习算法,以及算法复杂性分析等更高级 或新兴的数据结构与算法设计及分析方法。
1、道路
考试试题
N个以 1 … N 标号的城市通过单向的道路相连:。每条道路包含两个参数:道路的长度和需要为该路付的通行费(以金币的数目来表示)
Bob and Alice 过去住在城市 1.在注意到Alice在他们过去喜欢玩的纸牌游戏中作弊后,Bob和她分手了,并且决定搬到城市N。他希望能够尽可能快的到那,但是他囊中羞涩。我们希望能够帮助Bob找到从1到N最短的路径,前提是他能够付的起通行费。
时间限制:1000
内存限制:65536
输入
第一行包含一个整数K, 0 <= K <= 10000, 代表Bob能够在他路上花费的最大的金币数。第二行包含整数N, 2 <= N <= 100, 指城市的数目。第三行包含整数R, 1 <= R <= 10000, 指路的数目. 接下来的R行,每行具体指定几个整数S, D, L 和 T来说明关于道路的一些情况,这些整数之间通过空格间隔: S is 道路起始城市, 1 <= S <= N D is 道路终点城市, 1 <= D <= N L is 道路长度, 1 <= L <= 100 T is 通行费 (以金币数量形式度量), 0 <= T <=100 注意不同的道路可能有相同的起点和终点。
输出
输入结果应该只包括一行,即从城市1到城市N所需要的最小的路径长度(花费不能超过K个金币)。如果这样的路径不存在,结果应该输出-1。
样例输入
5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2
样例输出
11
参考答案
在这里插入代码片
2、控制公司
考试试题
有些公司是其他公司的部分拥有者,因为他们获得了其他公司发行的股票的一部分。例如,福特公司拥有马自达公司12%的股票。据说,如果至少满足了以下条件之一,公司A就可以控制公司B了:
l 公司A = 公司B。
l 公司A拥有大于50%的公司B的股票。
l 公司A控制K(K >= 1)个公司,记为C1, …, CK,每个公司Ci拥有xi%的公司B的股票,并且x1+ … + xK > 50%。(ps:A可以控制自己,即Ci可以为A)
你将被给予一系列的三对数(i,j,p),表明公司i拥有公司j的p%的股票。计算所有的数对(h,s),表明公司h控制公司s。
写一个程序读入三对数(i,j,p),并且找出所有的数对(h,s),使得公司h控制公司s。
时间限制:1000
内存限制:65536
输入
第一行: N,表明接下来三对数的数量。 第二行到第N+1行:每行三个整数作为一个三对数(i,j,p),如上文所述。 I,J≤100,N,P≤100
输出
输出零个或更多个的控制其他公司的公司。每行包括两个整数表明序号为第一个整数的公司控制了序号为第二个整数的公司。将输出的每行以第一个数字升序排列(并且第二个数字也升序排列来避免并列)。请不要输出控制自己的公司。
样例输入
3
1 2 80
2 3 80
3 1 20
样例输出
1 2
1 3
2 3
参考答案
在这里插入代码片
3、发现它,抓住它
考试试题
一个城市中有两个犯罪团伙A和B,你需要帮助警察判断任意两起案件是否是同一个犯罪团伙所为,警察所获得的信息是有限的。假设现在有N起案件(N<=100000),编号为1到N,每起案件由团伙A或团伙B所为。你将按时间顺序获得M条信息(M<=100000),这些信息分为两类:
-
D [a] [b]
其中[a]和[b]表示两起案件的编号,这条信息表明它们属于不同的团伙所为 -
A [a] [b]
其中[a]和[b]表示两起案件的编号,这条信息需要你回答[a]和[b]是否是同一个团伙所为
注意你获得信息的时间是有先后顺序的,在回答的时候只能根据已经接收到的信息做出判断。
时间限制:1000
内存限制:65536
输入
第一行是测试数据的数量T(1<=T<=20)。 每组测试数据的第一行包括两个数N和M,分别表示案件的数量和信息的数量,其后M行表示按时间顺序收到的M条信息。
输出
对于每条需要回答的信息,你需要输出一行答案。如果是同一个团伙所为,回答"In the same gang.“,如果不是,回答"In different gangs.”,如果不确定,回答”Not sure yet."。
样例输入
1
5 5
A 1 2
D 1 2
A 1 2
D 2 4
A 1 4
样例输出
Not sure yet.
In different gangs.
In the same gang.
参考答案
在这里插入代码片
4、青蛙的约会
考试试题
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
时间限制:1000
内存限制:65536
输入
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
输出
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
样例输入
1 2 3 4 5
样例输出
4
参考答案
在这里插入代码片