原题连接:1136 A Delayed Palindrome (20分)
题意: 模拟一个数在十次操作中能否成为回文数。
关键词: 模拟、高精度
输入格式:
输入在一行中给出一个不超过 1000 位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。
每行格式如下:
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。
重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.
;
或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.
。
输入样例1:
97152
输出样例1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例2:
196
输出样例2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
思路: 将原始数字读入string,然后再将它一位一位存到vector A中。注意存的时候倒着存让低位在0。接着进行10次判断,如果A是回文数就跳出循环,否则让A加上A的逆转B,并按规定进行输出。
代码:
#include <bits/stdc++.h>
using namespace std;
bool check(vector<int> A){ //判断是否是回文数
for(int i = 0, j = A.size() - 1; i < j; i ++ , j -- ){
if(A[i] != A[j]) return false;
}
return true;
}
vector<int> add(vector<int> A, vector<int> B) //高精度加法
{
vector<int> C;
for (int i = 0, t = 0; i < A.size() || i < B.size() || t; i ++ )
{
if(i < A.size()) t += A[i];
if(i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
return C;
}
int print(vector<int> a){ //打印
for(int i = a.size() - 1; i >= 0; i -- )
cout << a[i];
}
int main(){
string a;
cin >> a;
vector<int> A;
for(int i = 0; i < a.size(); i ++ ) A.push_back(a[a.size() - 1 - i] - '0');
for(int i = 0; i < 10; i ++ ){
if(check(A)) break;
vector<int> B(A.rbegin(), A.rend());
print(A), cout << " + " , print(B), cout << " = ";
A = add(A, B);
print(A), cout << endl;
}
if(check(A)) print(A), cout << " is a palindromic number.";
else puts("Not found in 10 iterations.");
}
使用到的库函数:
vector<int> B(A.rbegin(), A.rend());
生成B为A的逆转
AcWing Y总高精度加法模板:
代码:
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t);
return C;
}
参考资料:常用代码模板1——基础算法