hdu6035
贴两个很清真的blog
这个故事教导我们写blog要带图
两个blog都提到了不包含该颜色的联通块,
单个联通块里的计数很容易理解,
最后dfs完了,sum还是一通狂减,
乍一看很玄学,其实是包含根结点的联通块,现场的时候就卡在这一点上
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 2e5 + 801;
LL n, ans;
LL sum[N];
int col[N], size[N];
bool vis[N];
vector<int>G[N];
inline LL Cn2(LL n){ //组合数C(n,2)
return n*(n-1) >> 1;
}
void dfs(int u, int fa){
int all = 0;
size[u] = 1;
for (int i = 0; i < G[u].size(); i++){
int to = G[u][i];
if (to == fa) continue;
LL last = sum[col[u]];
dfs(to, u);
size[u] += size[to];
LL part = sum[col[u]] - last;
all += part;
ans -= Cn2(size [to] - part);
}
sum[col[u]] += size[u] - all;
}
int main(){
//freopen("in.txt", "r", stdin);
for (int x, y, _ = 1; ~scanf("%lld", &n); _++){
memset(vis, 0, sizeof(vis));
int col_cnt = 0;
for (int i = 1; i <= n; i++){
scanf("%d", &col[i]);
if (!vis[col[i]]) {
vis[col[i]] = true;
col_cnt++;
}
}
for (int i = 1; i <= n; i++) G[i].clear();
for (int i = 1; i < n; i++){
scanf("%d%d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
ans = col_cnt * Cn2(n);
memset(sum, 0, sizeof(sum));
dfs(1,0);
for (int i = 1; i <= n; i++) if(vis[i]){
ans -= Cn2(n - sum[i]);
}
printf("Case #%d: %lld\n", _, ans);
}
return 0;
}
树形dp真尼玛好玩
炉石传说真尼玛好玩