左偏树

本文作者:czj

左偏树的一道例题,hdu 1512

题目大意:有n个猴子,一开始每个猴子只认识自己。每个猴子有一个力量值,力量值越大表示这个猴子打架越厉害。如果2个猴子不认识,他们就会找他们认识的猴子中力量最大的出来单挑,单挑不论输赢,单挑的2个猴子力量值减半,这2拨猴子就都认识了,不打不相识嘛。现在给m组询问,如果2只猴子相互认识,输出-1,否则他们各自找自己认识的最牛叉的猴子单挑,求挑完后这拨猴子力量最大值。

题目分析:首先很明显这题涉及到集合并的操作,要用到并查集。其次要找到某一拨猴子中力量最大值,找最大值最快的应该是堆。2拨猴子要快速合并而又不失堆的特性,想来想去左偏树比较合适。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN = 1e5 + 5;
struct node
{
    int l,r,dis,key;
} tree[MAXN];
int far[MAXN];
int Find(int x) {
    if(far[x] == x) return x;
    return far[x] = Find(far[x]);
}

int merge(int a,int b)
{
    if(!a)
        return b;
    if(!b)
        return a;
    if(tree[a].key < tree[b].key)//大堆
        swap(a,b);
    tree[a].r = merge(tree[a].r,b);
    far[tree[a].r] = a;//并查
    if(tree[tree[a].l].dis < tree[tree[a].r].dis)
        swap(tree[a].l,tree[a].r);
    if(tree[a].r)
        tree[a].dis = tree[tree[a].r].dis + 1;
    else
        tree[a].dis = 0;
    return a;
}

int pop(int a)
{
    int l = tree[a].l;
    int r = tree[a].r;
    far[l] = l;//因为要暂时删掉根,所以左右子树先作为根
    far[r] = r;
    tree[a].l = tree[a].r = tree[a].dis = 0;
    return merge(l,r);
}

int main()
{
    int N, M;
    while(cin >> N)
    {

        for(int i = 1; i <= N; i++)
        {
            int x;
            far[i] = i;
            scanf("%d", &x);
            tree[i].key = x;
            tree[i].l = tree[i].r = tree[i].dis = 0;
        }
        cin >> M;
        while(M--) {
            int x, y;
            scanf("%d%d", &x, &y);
            x = Find(x);
            y = Find(y);
            if(x == y) {
                printf("-1\n");
            } else {
                int ra = pop(x);
                tree[x].key /= 2;
                ra = merge(ra, x);
                int rb = pop(y);
                tree[y].key /= 2;
                rb = merge(rb, y);
                x = merge(ra, rb);
                printf("%d\n", tree[x].key);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值