样本总体方差有偏估计和无偏估计的理解

 

学习概统的时候大家应该都知道有偏估计是

如果把x的均值换成确定的值u那么就是无偏的,原因后面说明

无偏估计是

是关于方差的无偏估计,那么为什么一个是/(n-1),为什么一个是/n呢

首先我们清楚几个公式,

D(x)=

E(x)=

有一个重要的假设,就是随机选取的样本X_{i}与总体样本同分布,它的意思就是说他们的统计特性是完全一样的,即他们的期望值一样,他们的方差值也是一样的:

E(X_{i})=E(X)=\mu

D(X_{i})=D(X)=\sigma ^{2}

由于每个样本的选取是随机的,因此可以假设X_{1},X_{2},...,X_{n}不相关(意味着协方差为0,即Cov(X_{i},X{j})=0,i\neq j),根据方差性质就有:

D(X_{i}+X_{j})=D(X_{i})+D(X_{j})+2Cov(X_{i},X_{j})=D(X_{i})+D(X_{j})=2\sigma ^{2}

方差的基本公式:

D(X)=E(X^2)-E^2(X)

这个公式比较重要,注意我们估计的均值的方差不为0,说明他本身不是一个确定的值,是有一定的波动范围的,并且由于我们不能完全估计所有的样本来得到均值,选取的是一部分的样本,所以方差是比总的方差小。

无偏估计的一个定义是:估计量的数学期望等于被估计参数的真实值,则称此此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。

我们可以通过下面的对方差求均值来看她的均值

E(S^{2})=E(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2})=\frac{1}{n-1}E(\sum_{i=1}^{n}X_{i}^2-n \bar{X}^{2})

=\frac{1}{n-1}(\sum_{i=1}^{n}E(X_{i}^2)-nE(\bar{X}^{2}) )

=\frac{1}{n-1}(\sum_{i=1}^{n}[D(X_{i})+E^2(X_{i})]-n[D(\bar{X})+E^{2}(\bar{X}) ])

=\frac{1}{n-1}(\sum_{i=1}^{n}[\sigma ^2+\mu^2]-n[\frac{1}{n}\sigma ^2+\mu^{2} ])=\sigma ^2

这个推导的关键在于,样本的均值并不等于实际的均值,他有一定的波动,(如果是实际的均值u,那么结果就是无偏的),当用样本的均值代替实际的均值u的时候,实际的方差的均值也会受到样本均值的方差的影响,从而偏离实际方差,所以要修正就要/n-1。所以他称为无偏估计。

  • 19
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值