2分法,对于最后能否达到x应满足每一对的:
edge(u, v) + sum(u) - sum(v) >= x
-->sum(v) <= sum(u) + (edge(u, v) - x)
-->d[v] <= d[u] + edge0(u, v)
-->模拟建图,判断是否有负环
注意:题目的目标是所有边的权值都大于0而不是非负
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int maxn = 500+5;
class Edge
{
public:
int pos, dist;
Edge(int pos, int dist)
{
this->pos = pos;
this->dist = dist;
}
};
vector<Edge> adj[maxn];
bool inq[maxn];
int d[maxn], cnt[maxn], n, m, up;
void Init()
{
for(int i = 1; i <= n; i++)
adj[i].clear();
int a, b, c;
up = 0;
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
adj[a].push_back(Edge(b, c));
up = max(up, c);
}
}
bool Bellman_Ford()
{
queue<int> myQue;
for(int i = 1; i <= n; i++)
{
myQue.push(i);
inq[i] = true;
d[i] = 0;
cnt[i] = 0;
}
while(!myQue.empty())
{
int u = myQue.front();
myQue.pop();
inq[u] = false;
for(vector<Edge>::iterator it = adj[u].begin(); it != adj[u].end(); it++)
{
int v = it->pos;
if(d[v] > d[u] + it->dist)
{
d[v] = d[u] + it->dist;
if(!inq[v])
{
myQue.push(v);
inq[v] = true;
if(++cnt[v] > n)
return true;//有负环
}
}
}
}
return false;
}
bool Test(int M)
{
for(int i = 1; i <= n; i++)
for(vector<Edge>::iterator it = adj[i].begin(); it != adj[i].end(); it++)
it->dist -= M;
bool flag = Bellman_Ford();
for(int i = 1; i <= n; i++)
for(vector<Edge>::iterator it = adj[i].begin(); it != adj[i].end(); it++)
it->dist += M;
return flag;
}
void Solve()
{
if(!Test(up+1))
printf("Infinite\n");
else if(Test(1))
printf("No Solution\n");
else
{
int L = 1, R = up + 1;
while(L < R - 1)
{
int M = L + (R - L) / 2;
if(!Test(M))
L = M;
else
R = M;
}
printf("%d\n", L);
}
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
Init();
Solve();
}
return 0;
}