poj 2411 状态压缩dp

题目描述:

用1*2的砖铺成h*w的矩形,问一共有多少种铺法。

思路:

状态压缩,dp[i][j]表示第i行状态为j的情况下的方案数。

用1表示该位置放了,0表示没放。

两步:1、先求出相邻两行的转化关系 ;2、通过相邻两行的转化关系算出经过n次转化有几种方法能拼成h*w的矩阵

分3种情况进行状态转移:( d表示当前列号,s1 表示本行的状态,s2表示上一行的状态,当前这一行访问结束时,就会得到上一行状态,和当前行状态,且s2一定能转换成s1

1、竖直放置:d=d+1;s1<<1|1,s2<<1   当前行该列置1,上一行为0;

2、水平放置:d=d+2;s1<<2|3,s2<<2|3  当前行放11,上一行也为11

3、不放置:  d=d+1;s1<<1,s2<<1|1  上一行该列置1,不能竖放。

用dfs枚举状态数。

初始化 d=1,s1=s2=0;第一行放置时,可以虚拟第0行,看做已经放好了,见init()


code:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <string>
#include <queue>
#include <vector>
#include <set>
#include <map>
using namespace std;
#define P system("pause")
#define inf 0x3f3f3f3f
typedef long long LL;
#define M 11
LL dp[12][1<<M];
int m,n;
void init(int d,int s)
{
    if(d==m+1)
    {
        dp[1][s]++;
        return;
    }
    if(d+1<=m+1)
        init(d+1,s<<1);
    if(d+2<=m+1)
        init(d+2,s<<2|3);
}
void dfs(int d,int s1,int s2,int row)
{
    if(d==m+1){
        dp[row][s1]+=dp[row-1][s2];
        return;
    }
    if(d+1<=m+1)
    {
        dfs(d+1,s1<<1|1,s2<<1,row);
        dfs(d+1,s1<<1,s2<<1|1,row);
    }
    if(d+2<=m+1)
        dfs(d+2,s1<<2|3,s2<<2|3,row);
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(!n&&!m)break;
        if(n*m%2)
        {
            puts("0");
            continue;
        }
        memset(dp,0,sizeof(dp));
        init(1,0);
        for(int i=2;i<=n;i++)
            dfs(1,0,0,i);
        printf("%lld\n",dp[n][(1<<m)-1]);
    }
    return 0;
}

参考:http://hi.baidu.com/godwitness/item/0ea3db25eb76451908750884

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值