27.跳台阶问题

 题目:一个台阶总共有n 级,如果一次可以跳1 级,也可以跳2 级。
求总共有多少总跳法,并分析算法的时间复杂度。
首先我们考虑最简单的情况。如果只有1 级台阶,那显然只有一种跳法。
如果有2 级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1 级;另外一种就是一
次跳2 级。
现在我们再来讨论一般情况。我们把n 级台阶时的跳法看成是n 的函数,记为f(n)。
当n>2 时,第一次跳的时候就有两种不同的选择:一是第一次只跳1 级,
此时跳法数目等于后面剩下的n-1 级台阶的跳法数目,即为f(n-1);
另外一种选择是第一次跳2 级,此时跳法数目等于后面剩下的n-2 级台阶的跳法数目,即为
f(n-2)。
因此n 级台阶时的不同跳法的总数f(n)=f(n-1)+f(n-2)。

分析到这里,已经是我们熟悉的Fibonacci序列了。

对Fibonacci序列有递归和非递归方法,非递归时间复杂度要小为O(N)

 

 

看到这里才知道自已的思维是多么的窄,唉,那就多看题吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值