从string array中寻找最长公共前缀。
flowey flower -> flowe (flower都不会写了只会写flowey undertale病犯了)
所有字母都以小写形式给出。
class Solution {
public:
string longestCommonPrefix(vector<string>& strs) {
if(strs.empty()) return "";
if(strs.size() == 1) return strs[0];
string prefix = commonPrefix(strs[1], strs[0]);
int size = strs.size();
for(int i = 2; i< size; i++){
prefix = commonPrefix(prefix, strs[i]);
}
return prefix;
}
string commonPrefix(string str1, string str2){
string prefix = "";
int len = max(str1.size(), str2.size());
for(int i = 0; i< len; i++){
if(str1[i] == str2[i]){
prefix += str1[i];
}else
break;
}
return prefix;
}
};
执行用时 : 16 ms, 在Longest Common Prefix的C++提交中击败了11.93% 的用户
内存消耗 : 10 MB, 在Longest Common Prefix的C++提交中击败了0.90% 的用户
注意, 数组为空的情况和数组元素为1 的情况需要特殊考虑。也就是说,写完程序之后,要考虑输入的特殊情况。 时间复杂度为 m*n
评论给的五种思路:
1、所求的最长公共前缀子串一定是每个字符串的前缀子串。所以随便选择一个字符串作为标准,把它的前缀串,与其他所有字符串进行判断,看是否是它们所有人的前缀子串。这里的时间性能是O(m*n*m)。
2、列出所有的字符串的前缀子串,将它们合并后排序,找出其中个数为n且最长的子串。时间性能为O(n*m+m*n*log(m*n))
3、纵向扫描:从下标0开始,判断每一个字符串的下标0,判断是否全部相同。直到遇到不全部相同的下标。时间性能为O(n*m)。
4、横向扫描:前两个字符串找公共子串,将其结果和第三个字符串找公共子串……直到最后一个串。时间性能为O(n*m)。
5、借助trie字典树。将这些字符串存储到trie树中。那么trie树的第一个分叉口之前的单分支树的就是所求。
排行上执行为4ms的范例
class Solution {
public:
string longestCommonPrefix(vector<string>& strs) {
string common_for = "";
size_t common_len = 0;
if (strs.empty()) return common_for;
for (auto iter = strs.cbegin();
iter != strs.cend();
++iter)
{
if (iter == strs.cbegin()) {
common_for = *iter;
common_len = common_for.length();
continue;
}
common_len = common_len < iter->length()
? common_len : iter->length();
for (int i = 0;
i < common_len;
++i) {
if (common_for[i] != (*iter)[i]) {
common_len = i;
break;
}
}
}
return common_for.erase(common_len);
}
};
话说这思路和我一样啊。。但是灵活运用的迭代器,值得去学习。