USACO 1.5 Prime Palindromes

Prime Palindromes

The number 151 is a prime palindrome because it is both a prime number and a palindrome (it is the same number when read forward as backward). Write a program that finds all prime palindromes in the range of two supplied numbers a and b (5 <= a < b <= 100,000,000); both a and b are considered to be within the range .

PROGRAM NAME: pprime

INPUT FORMAT

Line 1: Two integers, a and b

SAMPLE INPUT (file pprime.in)

5 500

OUTPUT FORMAT

The list of palindromic primes in numerical order, one per line.

SAMPLE OUTPUT (file pprime.out)

5
7
11
101
131
151
181
191
313
353
373
383

HINTS (use them carefully!)


题解:判断回文素数

第一遍 用素数筛 筛出素数,然后判断是否回文。 超时.........

第二遍 找出回文数 然后判断是否为素数 超时....

之后才发现不用挨个找回文数 直接创造回文数 然后判断其是否为素数。超级快


/*
ID: cxq_xia1
PROG: pprime
LANG: C++
*/

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int a,b;
int lena,lenb;
char creatN[10];
bool isprime(int n)                     //最朴素的方法判断素数
{
    if(n<a||n>b)
        return false;
    for(int i=2;i<=sqrt(n+0.0);i++)
    {
        if(n%i==0)
            return false;
    }
    return true;
}

int getNumLen(int n)                    //计算一个数的位数
{
    int len=0;

    while(n!=0)
    {
        n/=10; len++;
    }
    return len;
}
int getStrValue(int nowLen)
{
    int value=0;
    for(int i=1;i<=nowLen;i++)
    {
     //   value+=creatN[i]*pow(10.0,i-1.0);           不是很清楚pow函数,101他算出来是100。无奈用了下面的方法
        int tmp=1;
        for(int j=1;j<i;j++)
            tmp*=10;
        value+=creatN[i]*tmp;

    }
    return value;
}
void creatPD2(int nowLen,int harfNowlen,int nowdigit)
{
    for(int i=0;i<10;i++)
    {
        if(nowdigit==1&&i==0)
            continue;
        creatN[nowdigit]=i;
        creatN[nowLen+1-nowdigit]=i;
        if(nowdigit<harfNowlen)
        {
            nowdigit++;
            creatPD2(nowLen,harfNowlen,nowdigit);
            nowdigit--;
        }
        else
        {
            int tmp=getStrValue(nowLen);
            if(isprime(tmp))
                cout << tmp << endl;
        }
    }

}

void creatPD1(int nowLen)
{
    int harfNowLen;
    memset(creatN,0,sizeof(creatN));

    harfNowLen=(nowLen+1)/2;

    creatPD2(nowLen,harfNowLen,1);

    nowLen++;
    if(nowLen>lenb)
        return;
    else
        creatPD1(nowLen);

}

int main()
{

    freopen("pprime.in","r",stdin);
    freopen("pprime.out","w",stdout);
    cin >> a>> b;
    lena=getNumLen(a); lenb=getNumLen(b);

    creatPD1(lena);             //创造回文数
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 题目描述: 给定一个整数 $N$,求出大于 $N$ 的最小的既是质数又是回文数的数。 回文数指的是正着读和倒着读都一样的数字,例如 12321 就是一个回文数。 输入格式: 输入共 1 行,包含一个整数 $N$。 输出格式: 输出共 1 行,包含一个整数,表示题目所求的数。 数据范围: $1≤N≤10^7$ 样例: 输入: 31 输出: 101 解题思路: 从 $N$ 开始遍历,判断每一个数是否既是质数又是回文数。如果找到了这样的数,直接输出即可。 判断是否为质数可以用较为简单的暴力算法,枚举 $2$ 到 $\sqrt{x}$ 之间的所有数,看是否存在约数。 判断是否为回文数可以将该数转化为字符串,然后比较正序字符串和倒序字符串是否相等即可。 注意,本题所求的数可能非常大,需要使用 long long 类型存储,并且需要使用快速幂算法来快速计算幂次。同时,因为奇数位的回文数一定不是 11 的倍数,因此可以只枚举奇数位的回文数。 ### 回答2: 题目要求找出范围在2到N(包括2和N)之间的回文质数。所谓回文质数是指既是质数又是回文数的数。质数是指除了1和自身以外没有其他因数的正整数。 首先,我们先定义两个函数:一个是用来判断一个数是否为质数的函数is_prime,另一个是用来判断一个数是否为回文数的函数is_palindrome。 is_prime函数的实现方法如下:从2到该数的平方根进行遍历,判断是否存在该数的因数,如果存在则返回False,代表不是质数,如果遍历结束都没有找到因数,则返回True,代表是质数。 is_palindrome函数的实现方法如下:将该数字转化为字符串,并判断该字符串与其翻转后的字符串是否相等,如果相等则返回True,代表是回文数,否则返回False,代表不是回文数。 接下来,我们在范围从2到N进行遍历,对每个数字都进行is_prime和is_palindrome的判断,如果都满足条件,则将该数字输出。 下面是代码实现的伪代码: ``` function is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True function is_palindrome(num): num_str = str(num) if num_str == num_str[::-1]: return True return False function prime_palindromes(N): for num in range(2, N+1): if is_prime(num) and is_palindrome(num): print(num) ``` 以上是本题的解题思路和伪代码实现,希望能对你有所帮助。 ### 回答3: 题目要求找出所有小于等于N的回文质数。 回文数是指正读反读都相同的数,例如121、12321都是回文数。质数是只能被1和自身整除的数,例如2、3、5、7都是质数。 首先,我们可以编写一个函数来判断一个数是否为质数。函数的输入是一个正整数n,判断n是否能被小于n的所有数整除,如果能则返回False,否则返回True。 接下来,我们可以编写一个函数来判断一个数是否为回文数。函数的输入是一个正整数n,将n转换成字符串并反转,然后与原字符串进行比较,如果相同则返回True,否则返回False。 在主函数中,我们可以遍历1到N之间的所有数,对于每个数,首先判断是否为回文数,如果不是则跳过;然后判断是否为质数,如果是则输出该数。 最后,我们可以将上述步骤封装成一个循环,将N从2逐渐增加,直到N超过题目要求的上限。 以下是代码实现: def is_prime(n): for i in range(2, n): if n % i == 0: return False return True def is_palindrome(n): s = str(n) if s == s[::-1]: return True return False N = int(input()) for n in range(2, N + 1): if is_palindrome(n) and is_prime(n): print(n) 希望能够帮助你解答问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值