- 博客(123)
- 资源 (15)
- 收藏
- 关注
原创 基于“感知–规划–行动”的闭环系统架构
感知:通过多模态传感器、数据预处理与融合技术,实时构建环境状态,并利用SLAM等方法建立动态环境模型;规划:利用MDP/POMDP、MPC及深度强化学习等数学模型与算法,实现任务分解、状态预测和最优策略求解,支持在线重规划与风险评估;行动:基于高效运动规划和精密控制算法,将规划结果转化为具体执行指令,通过闭环反馈确保动作精度与安全;系统交互:通过模块化设计、信息反馈、自我学习以及多Agent协同机制,实现一个自适应、鲁棒且安全的智能行为系统。
2025-02-10 07:57:49
109
原创 教与学的双智能体协同
生成个性化报告 --> 家长端推送。教师制定大纲 --> 学生诊断。学习数据收集 --> 联邦分析。联邦分析 --> 教学计划更新。发布作业(含AI参考答案)自动批改+生成班级报告。学生智能体监测专注度。学生智能体调整学习流。
2025-02-10 07:17:35
7
原创 物理信息机器学习(PIML)的基础探讨及技术实现
物理信息机器学习作为一种融合数据驱动与物理先验的新型建模方法,既弥补了传统数值方法在高维、非线性问题求解上的不足,也克服了纯数据驱动模型在外推预测与物理解释上的缺陷。通过嵌入物理约束,PIML模型能够在数据稀缺条件下保持高预测精度,具有广阔的应用前景。
2025-02-09 21:39:52
73
原创 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
量化核心:降低数值精度,通过缩放因子 (S) 与零点 (Z) 实现线性映射。方法:后训练量化(PTQ)与量化感知训练(QAT)。挑战:精度损失、激活分布处理与硬件支持。技术栈:TensorFlow、PyTorch、TensorRT、TVM 等。案例:MobileNet 量化部署、TensorRT INT8 推理加速。剪枝核心:移除对模型输出贡献较小的参数,通过掩码 (M) 实现结构简化。方法:非结构化剪枝、结构化剪枝及迭代剪枝。挑战:评估参数重要性、剪枝率选择、再训练恢复精度。技术栈。
2025-02-09 21:02:40
150
原创 关于知识蒸馏的概念原理以及常见方法
借助知识蒸馏,可以在资源受限或大规模在线服务场景中,让深度学习模型变得更轻便、更高效,依然能在性能上与大模型相差无几,甚至更具优势。随着AI应用范围的不断扩大,知识蒸馏也在不断衍生出新的方法与思路,成为深度学习模型部署与优化不可或缺的一环。祝你在知识蒸馏领域取得更多实践成果和创新突破!的一种思路(在不改变任务的情况下把“大模型的知识”迁移到“小模型”)。以下提供关键要点和最佳实践。的一种主要手段,也可视作。
2025-02-08 23:45:40
299
原创 应急场景中的数据融合与对齐
在应急管理中,快速、准确地掌握现场状况、实时监控灾情并进行决策至关重要。各类数据(如卫星影像、无人机图像、激光雷达点云、地理信息系统(GIS)数据、传感器数据、社交媒体信息、移动终端数据等)具有来源广泛、格式多样、时空特性不同等特点。如何将这些异构数据无缝整合、实现高精度的对齐与融合,是提高应急响应能力和决策质量的关键。因此,本手册以应急数据融合与对齐为核心,系统阐述空间对齐、时间对齐以及数据格式、语义、质量、采样频率等多方面对齐技术,并结合实际案例和扩展补充措施,构建一个全面、动态且自适应的数据融合体系。
2025-02-06 16:03:28
34
原创 应急管理响应全过程中数据的主要类别、格式
在整个应急管理响应过程中,数据涵盖从静态基础数据(如地理、人口、基础设施)到实时监测数据(环境、视频、社交媒体)、指挥调度数据以及分析与决策支持数据。数据格式多样,包括 GIS 矢量和栅格格式、CSV、JSON、XML、视频音频编码以及专业的 CAD、3D 模型和 HDF5 格式。通过多层次的数据采集、预处理、融合、存储和共享平台,可以实现全面、实时、准确的灾情感知和决策支持,同时需要配合完善的数据安全与隐私保护措施,构建高效、可靠的应急管理数据体系。
2025-02-06 15:04:51
17
原创 一份完整系统化提升信息输出密度与逻辑严谨性的训练素材
预备阶段:明确目标、收集信息、制定评估标准;构思阶段:利用金字塔原理、思维导图和数学模型构建清晰、严谨的逻辑结构;表达阶段:撰写大纲、合理安排论据与论点、借助图表和流程图实现直观表达;反馈与迭代阶段:建立定量与定性的反馈机制,不断修正、完善表达体系;工具应用:借助现代文本分析、数据可视化与逻辑建模工具,提高表达质量和效率;高级策略:跨学科学习、模拟训练与自动化工具,实现持续进步。通过理论学习、工具实践、数学建模与反复迭代,你可以逐步内化这种科学思维方法,形成高密度、严谨且高效的沟通表达能力。
2025-02-03 10:53:16
1244
原创 构建由局部观测、分布式决策与全局奖励协同作用的多智能体强化学习系统
模型转换:将自治调度问题转化为POMDP,是处理局部信息不全和多智能体协作的基本出发点。局部观测与策略参数化:每个智能体基于自身局部观测oio_ioi采用参数化策略πioi;θi,这是实现分布式执行的关键。全局奖励设计:设计一个能够反映系统整体表现的全局奖励 R,并通过集中式Critic等方法解决信用分配问题,是多智能体协作的核心挑战之一。联合策略梯度与CTDE。
2025-02-02 16:40:24
996
原创 分层多维度应急管理系统的设计
系统支持动态扩展新的风险维度和处置策略,通过内置的演化学习模块,每季度自动生成《风险应对策略白皮书》,为决策者提供持续优化的管理建议。/* 当前决策树状态 *//* 实时资源状态 */
2025-01-31 10:34:46
415
原创 知识推理子类划分
知识推理是一个高度分化的领域,除了规则推理(Rule-Based Reasoning, RBR)外,还包含多种子类。这些子类根据推理逻辑、知识表示形式和应用场景的不同进行分类。知识推理的子类涵盖了从传统符号逻辑到现代混合智能的广泛方法,其分类维度包括逻辑范式、知识表示形式、推理目标等。
2025-01-31 00:18:12
756
原创 知识推理简要介绍
知识推理是连接数据与智能的核心纽带,其发展经历了从符号逻辑到神经符号融合的演变。未来,随着多模态知识表示、因果推理与可解释AI的进步,知识推理将在复杂决策、人机协作和科学发现中发挥更关键作用。知识推理(Knowledge Reasoning)是人工智能(AI)、认知科学和逻辑学的核心领域,其本质是通过对已有知识的逻辑化处理与规则化推导,生成新的知识或结论。知识推理是通过形式化逻辑规则、经验知识库或概率模型,从已知的显式或隐式知识中,推导出隐含的、未被直接表达的新知识或结论的过程。
2025-01-30 23:13:32
225
原创 如何构建树状的思维棱镜认知框架
要构建一个“可以不断下钻的树状思维棱镜”认知框架,需要从顶层设计到层级划分、从多维度的结合到具体的链接形式、从工具与技术实现到维护管理等全方位系统规划。清晰的层级结构:保证从整体到局部的分层递进,每一层内容既有概括性又为下一层提供生长空间。多维度、可棱镜化:在同一个层次或节点上,能够对接多个不同角度与标签,增强跨层与跨面关联。可持续的迭代与演化:通过反馈、版本管理、自动化分类、动态关联等机制,使框架在演变中保持内在一致性与实用性。工具和方法的结合。
2025-01-30 10:33:16
1033
原创 基于容器本地化开发与交付的实践
通过以上实践,您可以在本地环境中构建高效、安全且可维护的容器化应用体系,彻底摆脱对外网和云端服务的依赖。:在本地开发一个微服务,实时调试 Kubernetes 集群中的其他服务。:最终镜像从 ~1GB 缩减至 ~10MB。:实时监控 Pod、查看日志、进入容器终端。:减少生产镜像体积,剥离构建依赖。
2025-01-28 06:30:00
1064
原创 使用国内镜像加速器解决 Docker Hub 拉取镜像慢或被屏蔽的问题
通过配置国内镜像加速器,可显著提升 Docker 镜像的拉取速度,并规避网络限制。:使用国内镜像加速器,将 Docker 请求代理到国内服务器,提升下载速度并避免网络限制。镜像加速器仅代理 Docker Hub 的镜像拉取,若构建镜像时需要从。观察下载速度,正常情况应显著快于未配置加速器时。如果镜像加速器仍不稳定,可自建私有仓库(如。等工具下载依赖,仍需替换为国内源。)或使用企业级服务。
2025-01-27 18:00:00
1326
原创 Docker Desktop 解决从开发到部署的高效容器化工作流问题
Docker 和 Docker Desktop 提供了一个从开发到部署的高效容器化工作流。通过 Dockerfile、Compose 文件和 Docker Hub,你可以快速实现跨平台的应用交付。Kubernetes 可以进一步扩展和管理这些容器化应用,适合复杂的生产环境。Docker 是一个开源的容器化平台,提供了一种轻量级的方式来打包、运行和管理应用程序及其依赖项。Dockerfile 是 Docker 容器镜像的构建脚本,定义了基础镜像、依赖安装、代码拷贝等操作。
2025-01-27 16:00:00
1483
原创 提示词设计流程 ——《如何从0开始构建一个基于强化学习的AI智能体》使用场景为例
明确预期的输出形式和质量。格式要求:技术报告、教程文章、详细指南等。内容深度:从基础理论到实际实现的全流程指导。字数限制:确保内容详尽且易于理解。语言风格:正式、技术性、清晰明了等。撰写高质量的提示词,尤其在词汇和知识储备有限的情况下,需要系统化的方法和策略。
2025-01-27 10:00:00
1257
原创 Apache Airflow 全面解析
由 Airbnb 于 2014 年创建,2016 年进入 Apache 孵化器,2019 年成为顶级项目。通过以上系统性解析,开发者可全面掌握 Airflow 的核心能力,根据实际业务需求设计高效可靠的数据流水线。,通过编程方式定义、调度和监控复杂的数据流水线(Pipeline),适用于。Apache Airflow 是一个开源的。Airflow 采用。
2025-01-25 18:49:49
719
原创 基于 n8n 的公文生成自动化工作流
目标与需求自动化公文生成:根据预设的模板和结构,自动生成符合规范的公文。领域特定知识图谱支持:结合不同领域(如政府、法律、财务等)的知识图谱,提供准确且及时的知识支持。高效的工作流管理:使用n8n作为工作流底座,实现不同工具和服务的自动集成。动态调整与实时学习:基于用户反馈和实时数据更新,自动优化工作流中的模型和知识图谱。
2025-01-25 18:00:00
86
原创 基于大语言模型构建本地个人AI助理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。
2025-01-25 14:00:00
904
原创 如何利用AI LLM不断迭代生成更具专业性的提示词探索未知领域
撰写高质量的提示词,尤其在词汇和知识储备有限的情况下,需要系统化的方法和策略。通过明确目标与需求、结构化提示词设计、迭代优化与AI辅助反馈、高级提示词设计技巧、深入理解与应用专业术语,以及系统化学习与持续提升,您可以充分利用AI的强大能力,弥补词汇匮乏和知识不足的问题,撰写出专业、深入、系统、完整且具体的提示词,满足复杂的任务需求。持续的练习和优化,将帮助您不断提升提示词撰写的能力,实现更高水平的内容生成,充分发挥AI在内容创作中的辅助作用,从而达到最佳的工作效果。
2025-01-25 13:27:04
865
原创 Crisis Management Assistant (危机管理助手)
Crisis Management Assistant (CMA) 是一个强大的智能决策支持工具,旨在提高灾难响应、应急管理和危机处理的效率。通过集成实时数据、情境模拟、智能资源调度和跨部门协作,CMA能够显著提升应急指挥决策的质量与效率。尽管存在数据准确性和系统适应性等挑战,但随着技术的不断进步,CMA必将在各类危机管理场景中发挥越来越重要的作用。
2025-01-24 15:00:00
40
原创 基于动态知识图谱与增量学习驱动构建本地个人专属大模型
灵活的动态知识库管理:通过构建动态知识图谱,支持不断变化的知识库,并通过增量推理和在线学习确保模型能够快速响应新信息。高效的增量推理与实时更新:利用增量推理和多通道集成技术,使得模型可以在不进行全面微调的情况下,结合外部知识进行推理与生成。减少模型微调频率:通过MCP协议实现模型的在线更新和热加载,避免每次知识库变更都进行大规模微调。多模态支持与实时查询机制:处理多种数据格式(文本、图像、音频等),并通过实时查询机制与外部知识库的集成,确保模型生成的时效性和准确性。
2025-01-24 12:00:00
39
原创 Command Center AI
Command Center AI 是一种高效、智能的决策支持系统,在各种应急、指挥、资源调度和危机管理场景中都具有广泛应用。通过集成实时数据、情境模拟、智能调度和跨部门协作,它为指挥官提供了强大的决策支持能力,帮助快速、精准地应对复杂的紧急情况。随着技术的不断进步,Command Center AI 将越来越成为现代应急管理和指挥决策中的核心工具。
2025-01-24 09:51:24
567
原创 对个人本地化专属模型的优化思路
为了避免频繁微调并高效应对动态知识库的变化,应该采用动态知识图谱增量推理在线学习MCP协议等技术方案。结合多通道集成与实时查询机制,可以更灵活地响应知识库的变化,同时保持生成模型的高效性和准确性。这些方案提供了更高效、更灵活的知识更新方式,避免了传统模型微调带来的高计算成本和时效性问题。
2025-01-24 06:00:00
21
原创 低成本构建领域特定知识图谱
通过利用现有的开源工具、公共API和领域知识图谱,可以在低成本的基础上构建一个领域特定的知识图谱。关键步骤包括从文本和开放数据源中抽取实体和关系,存储到图数据库中,并结合大语言模型和推理引擎增强图谱的智能和交互能力。随着技术的成熟,这些方法可以大大降低构建知识图谱的门槛和成本,并快速扩展到不同的应用场景。
2025-01-23 11:14:13
668
原创 个性化的语言模型构建思路
知识库构建:从不同格式的资料中提取有效信息,构建结构化或非结构化的知识库。模型微调(Fine-Tuning):利用个人知识库对开源大语言模型进行微调,使模型能够理解和生成与特定领域相关的文本。多模态信息整合:处理不同类型的数据(文本、图像、语音、视频),并将它们整合到知识库中,以增强模型的多模态能力。模型部署与接口设计:将微调后的模型部署到生产环境,并设计合适的API或用户界面以便使用。
2025-01-23 09:47:34
475
原创 构建本地个人专属大模型
个性化写作助手:通过微调大语言模型(如Llama3、Qwen2.5、Falcon3等)来生成专属的写作助手,支持领域特定的文本生成,能够生成带有精确引用信息的内容。多模态数据处理:支持处理文本、图像、音频、视频等多种数据格式,提供一致且高质量的输出。引用生成能力:在文本生成时,能够嵌入准确的引用信息,包括文件名、章节、页码、段落等元数据。本地化部署:模型将部署在本地(或私有云环境)中,通过API接口或Web界面进行交互,确保隐私保护和高效运行。
2025-01-23 09:38:50
227
原创 智能体在环境中学习和作出决策
强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(Cumulative Reward)的策略。其理论基础通常以马尔可夫决策过程(Markov Decision Process, MDP)为框架。MDP的五元组通常表示为SAPRγSAPRγSSS表示状态空间(State Space);AAA表示动作空间(Action Space);PPP。
2025-01-21 10:50:46
195
原创 构建沉浸式汉语学习环境
系统通过API网关与现有教育平台(如Moodle)无缝集成,支持快速部署。持续学习机制确保内容与时俱进,每月自动更新流行语库与文化热点。的技术三角,构建沉浸式汉语学习环境。
2025-01-21 10:41:20
44
原创 免费的数据标注工具
图像标注文本标注:Doccano、Prodigy(免费试用)。综合标注:Labelbox。这些工具的共同优点是开源、免费或提供免费基础版,并且功能丰富,适合AI开发者在标注任务中提高效率,减少人工干预。如果你的项目涉及多个数据类型,可以组合使用不同工具,以达到最佳效果。
2025-01-18 23:49:41
1103
原创 数据增强方法及其工具
图像数据增强是深度学习中常用且有效的技术,能够通过简单的变换方法(如旋转、翻转、裁剪、加噪声等)生成多样化的数据,提高模型的鲁棒性和泛化能力。常见的实现方式有手动实现、使用Keras的、Albumentations、Augmentor等库。这些库不仅简单易行,而且提供了许多强大的数据增强功能,能够帮助开发者快速生成增强样本。
2025-01-18 23:47:34
1426
原创 价值分解方法(QMIX、VDN、FACMAC、VDA2C)整理
在多智能体强化学习中,多个智能体需要在共享环境中协同工作,以完成复杂任务。传统的集中式方法由于计算复杂度和扩展性问题,难以适应大规模智能体系统。价值分解方法通过将全局价值函数分解为各个智能体的局部价值函数,既保留了全局协作信息,又提高了算法的扩展性和计算效率。在价值分解方法中,VDNQMIXFACMAC和VDA2CVDN提供了一种简单而有效的价值分解方法,适用于基础和独立性较高的多智能体任务,但在高协作需求下表现有限。QMIX。
2025-01-17 19:30:00
45
原创 一个多智能体(Multi-Agent)协同工作的整体框架示例
借助“Plan—Execute—Express—Review”四个智能体的协同,可以将传统的线性处理流程改造成多轮迭代的动态系统,显著提升对复杂推理和决策任务的准确度和鲁棒性。在灾害预测、灾情评估、救灾决策指挥等高复杂度场景中,通过多模型融合、可视化表达、多维度评价与快速纠偏,能够更好地支撑决策者在关键时刻做出及时、准确、可解释的响应。随着人工智能领域对多智能体系统、自动化工作流、元推理与连续学习等前沿技术的不断突破,基于此框架的下一步演进将会走向更加灵活的自组织。
2025-01-17 12:00:00
253
原创 构建“数据精制—观点注入—表达”三大智能体
地震地质灾害(如山体滑坡、泥石流)气象灾害(暴雨、暴雪、强对流天气等,不含台风)洪水森林草原火灾通过三大智能体——数据精制(Data-fining)、观点注入(Opinion-inject)和表达(Express),构建一个针对「数据密集、高计算精度」并可「融合多学科专家观点」的闭环应急管理与决策系统。系统在应急管理的四大阶段(预防、准备、响应、恢复)发挥全方位支撑作用。
2025-01-17 07:00:00
27
原创 构建一个高效、可靠且可扩展的开发环境
通过以上详细的步骤和最佳实践,我们以smolagents项目为例,深入探讨了如何利用VS CodeGitHub和Docker进行高效的基于容器的开发。项目初始化与结构:建立合理的项目目录结构,确保代码的可维护性和扩展性。VS Code 配置:利用扩展和自定义设置,提升开发效率和代码质量。容器化开发环境:通过 Docker 和 Docker Compose,实现开发环境的一致性、快速部署和高可用性。版本控制与 GitHub 集成。
2025-01-16 18:30:00
1114
原创 集中批评学习方法详解及对比分析
在多智能体系统中,多个智能体需要在共享环境中独立或协同地做出决策。集中批评学习是一种策略梯度方法,通过引入集中化的批评者(Critic),来估计全局或联合的价值函数,从而指导各个智能体的策略更新。这种方法能够更好地捕捉智能体间的协作关系,解决部分观测问题,提高学习效率和策略质量。COMA:适合高协作需求的任务,通过反事实基线提高策略梯度稳定性,但计算复杂度高。MADDPG:适用于连续动作空间的多智能体控制任务,模型相对成熟,易于实现和扩展。MAPPO。
2025-01-16 06:30:00
105
基于人工智能的个性化教学与汉语学习平台:整合多方资源,实现教师学生需求平滑连接
2025-01-14
教育领域AI技术在高校虚拟教学助理项目的应用与效益分析:涵盖个性化教学、智能反馈及跨学科拓展
2025-01-14
文物管理领域的AI辅助系统-智能化文物分类、鉴定与保护技术实现
2025-01-14
电力行业应对自然灾害的非结构化数据归集技术标准及实施指南
2025-01-14
自然灾害应急管理中的技术与多维复盘分析
2025-01-14
中英开放数据报告.pdf
2021-01-27
2020年新基建产业人才发展报告【20页】.pdf
2021-01-27
“新基建”系列研究报告【43页】.pdf
2021-01-27
智慧服务项目实施计划
2020-05-13
城市智慧服务项目-工作说明书
2020-05-13
NOCC工程系统集成2标招标文件-技术部分
2020-05-13
保险资产管理私有云平台搭建项目投标文件_技术部分
2020-05-13
保险资产私有云平台实施方案
2020-05-13
室内分布系统工程勘察设计采购项目投标书-商务分册
2020-05-13
2015-12航空总医院科教信息化系统建设项目汇报(1).ppt
2020-05-13
R语言量化投资数据分析应用
2020-05-13
网络爬虫-Python和数据分析
2015-03-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人