题目背景考虑到安全指数是一个较大范围内的整数、小菜很可能搞不清楚自己是否真的安全,顿顿决定设置一个阈值 θ,以便将安全指数 y 转化为一个具体的预测结果——“会挂科”或“不会挂科”。 因为安全指数越高表明小菜同学挂科的可能性越低,所以当 y≥θ 时,顿顿会预测小菜这学期很安全、不会挂科;反之若 y<θ,顿顿就会劝诫小菜:“你期末要挂科了,勿谓言之不预也。” 那么这个阈值该如何设定呢?顿顿准备从过往中寻找答案。 题目描述具体来说,顿顿评估了 m 位同学上学期的安全指数,其中第 i(1≤i≤m)位同学的安全指数为 yi,是一个 [0,108] 范围内的整数;同时,该同学上学期的挂科情况记作 resulti∈0,1,其中 0 表示挂科、1 表示未挂科。 相应地,顿顿用 predictθ(y) 表示根据阈值 θ 将安全指数 y 转化为的具体预测结果。 predictθ(y)={0(y<θ)1(y≥θ) 最后,顿顿设计了如下公式来计算最佳阈值 θ∗: θ∗=maxargmaxθ∈yi∑j=1m(predictθ(yj)==resultj) 该公式亦可等价地表述为如下规则:
输入格式从标准输入读入数据。 输入的第一行包含一个正整数 m。 接下来输入 m 行,其中第 i(1≤i≤m)行包括用空格分隔的两个整数 yi 和 resulti,含义如上文所述。 输出格式输出到标准输出。 输出一个整数,表示最佳阈值 θ∗。 |
要求的就是预测正确次数最大时对应的安全指数y。所以只要遍历安全指数y,对每一个安全指数y求它的预测正确次数,最后找出预测正确次数最大时对应的y即可。
再进一步看,这里安全指数y和挂科情况result是捆绑在一起的,所以我们建立Score结构体来保存y和result,再创建结构体数组来保存输入值。安全指数y间存在明显的大小关系,所以我们想到对结构体数组按y排序。接下来就是最关键的一步了,如何求每一个安全指数y的预测正确次数?首先,我们已经按y排好序了。这里,我们每遍历一组数据,都保存当前已经遍历过的0和1的数目,我们事先保存1和0的总数目,就可以用公式 r = sum0 + x1 - sum1( sum0、sum1是当前已经遍历过的0、1的数目,x1是1的总数)来方便地求出每一个安全值的预测正确次数。
特别注意:对于重复的安全指数y,我们要放在一起处理。
以下是源代码:
# include <iostream>
# include <algorithm>
# include <vector>
using namespace std;
typedef struct Score { //保存y和result的结构体
long long y; //安全指数
int result; //是否挂科(0、1)
}Score;
bool cmp(Score a, Score b) { //对结构体的排序,要定义cmp
return a.y < b.y;
}
vector<Score>S;
int x0 = 0; //0的总数目
int x1 = 0; //1的总数目
int main()
{
int m;
cin >> m;
Score a;
for (int i = 0; i < m; i++) {
cin >> a.y >> a.result;
S.push_back(a);
if (a.result) {
x1++; //0的总数+1
}
else {
x0++; //1的总数+1
}
}
sort(S.begin(), S.end(), cmp); //按照安全指数y的大小进行排序
int p = 0; //保存最大的预测正确次数
int k = 0; //保存最大的预测正确次数对应的安全值
int sum0 = 0, sum1 = 0; //当前安全指数之前已经出现的0和1次数
for (int i = 0; i < m; i++) {
int r = sum0 + x1 - sum1; //每一个安全指数对应的预测正确次数
int j;
for (j = i; j < m && S[i].y == S[j].y; j++) { //对重复的安全指数做统一处理
if (S[j].result) { //若无重复,只处理一次
sum1++;
}
else {
sum0++;
}
}
i = j - 1; //若有多个安全指数重复,i一次性跳过
if (r >= p) { //比较选取较大的预测次数
p = r;
k = S[i].y;
}
}
cout << k << endl;
return 0;
}
以上是我的个人见解,欢迎大家观看指正。