动态规划之最大子段和问题

博客介绍了如何使用动态规划解决寻找由整数组成的序列中最大子段和的问题。当序列全为负数时,最大子段和为0。通过维护以每个元素为结尾的子段和集合中的最大值,可以得到最优解。给出了一种递推关系式:b[j]=Max(b[j-1]+a[j], a[j]),并举例说明了算法的应用。" 112656300,10293661,PowerQuery批量合并Excel指定列教程,"['数据处理', 'Excel工具', 'PowerBI', '数据整合', '办公自动化']
摘要由CSDN通过智能技术生成

有一由n个整数组成的序列A={a1,a2,…an,},求该序列如
a[i]+a[i+1]+…+a[j]的子段和的最大值。如果序列中全部是负数则最大子段和为0,依此定义,所求的最优值max{0,a[i]+a[i+1]+…+a[j]},1≤i≤j≤n。

输入:n //序列的长度
序列值

输出:最大子段和

例如:
输入:
6
-2,11,-4,13,-5,-2
输出:
20

算法可通过动态规划求解:
我们用b[j]来记录以j为结尾的子段和集合中的最大值。
举个例子:假如有一个序列:-2,11,-4,13,-5,-2有:
a[1]=-2, a[2]=11, a[3]=-4, a[4]=13, a[5]=-5, a[6]=-2;
b[1]=-2, b[2]=11, b[3]=7, b[4]=20, b[5]=15, b[6]=13;
b[1]<0, b[2]>0, b[3]>0, b[4]>0, b[5]>0, b[6]>0;
递推关系:
b[j]=Max(b[j-1]+a[j], a[j]) //b[j]表示以j结尾的字段和集合中的最大值

由此可写出如下代码:

#include<iostream>
using namespace std;

int a[100];
int b[100];
int Max(int a,int b);
int getMaxSum(int a[],int n,int &begin,int &end);
    //a[] 存储序列   
    //n 序列长度
    //begin end 开始、结束的位置 
int main(){
    int begin=-1,end=-1;
    int maxSum;
    int n;
    cout<<"请输入序列的长度:"<<endl; 
    cin>>n;
    cout<<"请输入序列:"<<endl; 
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    maxSum=getMaxSum(a,n,begin,end);
    cout<<"最大字段和为:"<<maxSum<<endl;
    cout<<"开始位置为:"<<begin<<endl;
    cout<<"结束位置为:"<<end<<endl;
    return 0;
} 

int getMaxSum(int a[],int n,int &begin,int &end){
    int max=0;
    for(int i=1;i<=n;i++){
        b[i]=Max(a[i],b[i-1]+a[i]);
        if(max<b[i]){
            max=b[i];//保存在最大值中 
            end=i;//记下end的值 
        }
    }
    for(int i=end;i>=0;i--){//回溯法求起始位置 
        if(b[i]=a[i]){
            begin=i;
        }
    }
    return max;
}

int Max(int a,int b){
    if(a>=b){
        return a;
    }
    else
        return b;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值