最小编辑距离算法 Edit Distance(经典DP)

最小编辑距离算法 Edit Distance(经典DP)

转载baodream 最后发布于2018-05-23 11:36:32 阅读数 22226  收藏

展开

编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

最小编辑距离模板:

 
  1. int dp[1005][1005]; /*dp[i][j]表示表示A串从第0个字符开始到第i个字符和B串从第0个

  2. 字符开始到第j个字符,这两个字串的编辑距离。字符串的下标从1开始。*/

  3. char a[1005],b[1005]; //a,b字符串从下标1开始

  4.  
  5. int EditDis()

  6. {

  7. int len1 = strlen(a+1);

  8. int len2 = strlen(b+1);

  9. //初始化

  10. for(int i=1;i<=len1;i++)

  11. for(int j=1;j<=len2;j++)

  12. dp[i][j] = INF;

  13. for(int i=1;i<=len1;i++)

  14. dp[i][0] = i;

  15. for(int j=1;j<=len2;j++)

  16. dp[0][j] = j;

  17. for(int i=1;i<=len1;i++)

  18. {

  19. for(int j=1;j<=len2;j++)

  20. {

  21. int flag;

  22. if(a[i]==b[j])

  23. flag=0;

  24. else

  25. flag=1;

  26. dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+flag));

  27. //dp[i-1][j]+1表示删掉字符串a最后一个字符a[i]

  28. //dp[i][j-1]+1表示给字符串添加b最后一个字符

  29. //dp[i-1][j-1]+flag表示改变,相同则不需操作次数,不同则需要,用flag记录

  30. }

  31. }

  32. return dp[len1][len2];

  33. }

 

 

概念

字符串的编辑距离,又称为Levenshtein距离,由俄罗斯的数学家Vladimir Levenshtein在1965年提出。是指利用字符操作,把字符串A转换成字符串B所需要的最少操作数。其中,字符操作包括:

  • 删除一个字符     a) Insert a character
  • 插入一个字符     b) Delete a character
  • 修改一个字符     c) Replace a character

例如对于字符串"if"和"iff",可以通过插入一个'f'或者删除一个'f'来达到目的。

  一般来说,两个字符串的编辑距离越小,则它们越相似。如果两个字符串相等,则它们的编辑距离(为了方便,本文后续出现的“距离”,如果没有特别说明,则默认为“编辑距离”)为0(不需要任何操作)。不难分析出,两个字符串的编辑距离肯定不超过它们的最大长度(可以通过先把短串的每一位都修改成长串对应位置的字符,然后插入长串中的剩下字符)。

 

 

问题描述

 

 

给定两个字符串A和B,求字符串A至少经过多少步字符操作变成字符串B。 

 


问题分析

 

1)首先考虑A串的第一个字符

  假设存在两个字符串A和B,他们的长度分别是lenA和lenB。首先考虑第一个字符,由于他们是一样的,所以只需要计算A[2...lenA]和B[2...lenB]之间的距离即可。那么如果两个字符串的第一个字符不一样怎么办?可以考虑把第一个字符变成一样的(这里假设从A串变成B串):

  • 修改A串的第一个字符成B串的第一个字符,之后仅需要计算A[2...lenA]和B[2...lenB]的距离即可;
  • 删除A串的第一个字符,之后仅需要计算A[2...lenA]和B[1...lenB]的距离即可;
  • 把B串的第一个字符插入到A串的第一个字符之前,之后仅需要计算A[1...lenA]和B[2...lenB]的距离即可。

2)接下来考虑A串的第i个字符和B串的第j个字符。

  我们这个时候不考虑A的前i-1字符和B串的第j-1个字符。如果A串的第i个字符和B串的第j个字符相等,即A[i]=B[j],则只需要计算A[i...lenA]和B[j...lenB]之间的距离即可。如果不想等,则:

  • 修改A串的第i个字符成B串的第j个字符,之后仅需要计算A[i+1...lenA]和B[j+1...lenB]的距离即可;
  • 删除A串的第i个字符,之后仅需要计算A[i+1...lenA]和B[j...lenB]的距离即可;
  • 把B串的第j个字符插入到A串的第i个字符之前,之后仅需要计算A[i...lenA]和B[j+1...lenB]的距离即可。

  写到这里,自然会想到用递归求解或者动态规划求解,由于用递归会产生很多重复解,所以用动态规划。

 

 

建动态规划方程

 

  用edit[i][j]表示A串和B串的编辑距离。edit[i][j]表示A串从第0个字符开始到第i个字符和B串从第0个字符开始到第j个字符,这两个字串的编辑距离。字符串的下标从1开始。

  dis[0][0]表示word1和word2都为空的时候,此时他们的Edit Distance为0。很明显可以得出的,dis[0][j]就是word1为空,word2长度为j的情况,此时他们的Edit Distance为j,也就是从空,添加j个字符转换成word2的最小Edit Distance为j;同理dis[i][0]就是,word1长度为i,word2为空时,word1需要删除i个字符才能转换成空,所以转换成word2的最小Edit Distance为i。

  则从上面的分析,不难推导出动态规划方程:

,其中

上式中的min()函数中的三个部分,对应三种字符操作方式:

edit[i-1][j]+1相当于给word2的最后插入了word1的最后的字符,插入操作使得edit+1,之后计算edit[i-1][j];

edit[i][j-1]+1相当于将word2的最后字符删除,删除操作edit+1,之后计算edit[i][j-1];

edit[i-1][j-1]+flag相当于通过将word2的最后一个字符替换为word1的最后一个字符。flag标记替换的有效次数。

 

 

 

算法分析: 

  也就是说,就是将一个字符串变成另外一个字符串所用的最少操作数,每次只能增加、删除或者替换一个字符。
  首先我们令word1和word2分别为:michaelab和michaelxy(为了理解简单,我们假设word1和word2字符长度是一样的),dis[i][j]作为word1和word2之间的Edit Distance,我们要做的就是求出michaelx到michaely的最小steps。

  首先解释下dis[i][j]:它是指word1[i]和word2[j]的Edit Distance。dis[0][0]表示word1和word2都为空的时候,此时他们的Edit Distance为0。很明显可以得出的,dis[0][j]就是word1为空,word2长度为j的情况,此时他们的Edit Distance为j,也就是从空,添加j个字符转换成word2的最小Edit Distance为j;同理dis[i][0]就是,word1长度为i,word2为空时,word1需要删除i个字符才能转换成空,所以转换成word2的最小Edit Distance为i。下面及时初始化代码:

       for (int i = 0; i < row; i++) dis[i][0] = i;
       for (int j = 0; j < col; j++) dis[0][j] = j;

 

 

    下面来分析下题目规定的三个操作:添加,删除,替换。
    假设word1[i]和word2[j](此处i = j)分别为:michaelab和michaelxy
    如果b==y, 
        那么:dis[i][j] = dis[i-1][j-1]。                                                              
    如果b!=y,
        那么:添加:也就是在michaelab后面添加一个y,那么word1就变成了michaelaby,
             此时  dis[i][j] = 1 + dis[i][j-1];
    上式中,1代表刚刚的添加操作,添加操作后,word1变成michaelaby,word2为michaelxy。
    dis[i][j-1]代表从word1[i]转换成word2[j-1]的最小Edit Distance,也就是michaelab转换成michaelx的最小
    Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaelab变成michaelx就可以了,而他们之间的最
    小Edit Distance就是dis[i][j-1]。
 
    删除:也就是将michaelab后面的b删除,那么word1就变成了michaela,此时dis[i][j] = 1 + dis[i-1][j];
    上式中,1代表刚刚的删除操作,删除操作后,word1变成michaela,word2为michaelxy。dis[i-1][j]代表从
    word[i-1]转换成word[j]的最小Edit Distance,也就是michaela转换成michaelxy的最小Edit Distance,所以
    只需要将michaela变成michaelxy就可以了,而他们之间的最小Edit Distance就是dis[i-1][j]。
 
    替换:也就是将michaelab后面的b替换成y,那么word1就变成了michaelay,此时dis[i][j] = 1 + dis[i-1][j-1];
    上式中,1代表刚刚的替换操作,替换操作后,word1变成michaelay,word2为michaelxy。dis[i-1][j-1]代表从
    word[i-1]转换成word[j-1]的最小Edit Distance,也即是michaelay转换成michaelxy的最小Edit Distance,由
    于两个字符串尾部的y==y,所以只需要将michaela变成michaelx就可以了,而他们之间的最小Edit Distance就是
    dis[i-1][j-1]。
 
 
举例:
 

比如要计算cafe和coffee的编辑距离。cafe→caffe→coffe→coffee

先创建一个6×8的表(cafe长度为4,coffee长度为6,各加2)

(1):

    coffee
                
c              
a              
f              
e          1

接着,在如下位置填入数字(表2):

    coffee
  0123456
c1            
a2            
f3            
e4        2

从3,3格开始,开始计算。取以下三个值的最小值:

  • 如果最上方的字符等于最左方的字符,则为左上方的数字。否则为左上方的数字+1。(对于3,3来说为0)

  • 左方数字+1(对于3,3格来说为2)

  • 上方数字+1(对于3,3格来说为2)

因此为格3,3为0(表3)

    coffee
  0123456
c1  0           
a2            
f3            
e4        3     

循环操作,推出下表

    coffee
  0123456
c10123   4   5   
a2112345
f3221234
e4332223

取右下角,得编辑距离为3

 

 

 

 

 

编辑距离

力扣官方题解

分解问题, 问题基础上退化一步,

想法

编辑距离算法被数据科学家广泛应用,是用作机器翻译和语音识别评价标准的基本算法。

最直观的方法是暴力检查所有可能的编辑方法,取最短的一个。所有可能的编辑方法达到指数级,但我们不需要进行这么多计算,因为我们只需要找到距离最短的序列而不是所有可能的序列。

方法一:动态规划

思路和算法

我们可以对任意一个单词进行三种操作:

  • 插入一个字符;

  • 删除一个字符;

  • 替换一个字符。

题目给定了两个单词,设为 A 和 B,这样我们就能够六种操作方法。

但我们可以发现,如果我们有单词 A 和单词 B

  • 对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge

  • 同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;

  • 对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

这样以来,本质不同的操作实际上只有三种:

  • 在单词 A 中插入一个字符;

  • 在单词 B 中插入一个字符;

  • 修改单词 A 的一个字符。

这样以来,我们就可以把原问题转化为规模较小的子问题。我们用 A = horseB = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的。

  • 在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;

  • 在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;

  • 修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)

注意:为什么我们总是在单词 A 和 B 的末尾插入或者修改字符,能不能在其它的地方进行操作呢?答案是可以的,但是我们知道,操作的顺序是不影响最终的结果的。例如对于单词 cat,我们希望在 c 和 a 之间添加字符 d 并且将字符 t 修改为字符 b,那么这两个操作无论为什么顺序,都会得到最终的结果 cadb

你可能觉得 horse 到 ro 这个问题也很难解决。但是没关系,我们可以继续用上面的方法拆分这个问题,对于这个问题拆分出来的所有子问题,我们也可以继续拆分,直到:

  • 字符串 A 为空,如从 转换到 ro,显然编辑距离为字符串 B 的长度,这里是 2

  • 字符串 B 为空,如从 horse 转换到 ,显然编辑距离为字符串 A 的长度,这里是 5

因此,我们就可以使用动态规划来解决这个问题了。我们用 D[i][j] 表示 A 的前 i 个字母和 B 的前 j 个字母之间的编辑距离。

72_fig1.PNG

如上所述,当我们获得 D[i][j-1]D[i-1][j] 和 D[i-1][j-1] 的值之后就可以计算出 D[i][j]

  • D[i][j-1] 为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i][j-1] + 1

  • D[i-1][j] 为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i-1][j] + 1

  • D[i-1][j-1] 为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j] 最小可以为 D[i-1][j-1] + 1。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j] 最小可以为 D[i-1][j-1]

那么我们可以写出如下的状态转移方程:

  • 若 A 和 B 的最后一个字母相同:

    \begin{aligned} D[i][j] &= \min(D[i][j - 1] + 1, D[i - 1][j]+1, D[i - 1][j - 1])\\ &= 1 + \min(D[i][j - 1], D[i - 1][j], D[i - 1][j - 1] - 1) \end{aligned}D[i][j]​=min(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1])=1+min(D[i][j−1],D[i−1][j],D[i−1][j−1]−1)​

  • 若 A 和 B 的最后一个字母不同:

    D[i][j] = 1 + \min(D[i][j - 1], D[i - 1][j], D[i - 1][j - 1])D[i][j]=1+min(D[i][j−1],D[i−1][j],D[i−1][j−1])

所以每一步结果都将基于上一步的计算结果,示意如下:

72_fig2.PNG

对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = jD[i][0] 相当于对 word1 执行 i 次删除操作,D[0][j] 相当于对 word1执行 j 次插入操作。

综上我们得到了算法的全部流程。

 

 

 

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值