什么是异或_异或运算及异或运算的作用

什么是异或_异或运算及异或运算的作用

异或,是一个数学运算符,英文为exclusive OR,缩写为xor,应用于逻辑运算。

异或的数学符号为“⊕”,计算机符号为“xor”。其运算法则为:

  a⊕b = (¬a ∧ b) ∨ (a ∧¬b)

如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。

异或也叫半加运算,其运算法则相当于不带进位的二进制加法:

二进制下用1表示真,0表示假,则异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),

这些法则与加法是相同的,只是不带进位。

  异或略称为XOR、EOR、EX-OR

  程序中有三种演算子:XOR、xor、⊕。

  使用方法如下

  z = x ⊕ y

  z = x xor y

异或运算的作用

参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1。

即:

0^0 = 0,

1^0 = 1,

0^1 = 1,

1^1 = 0

按位异或的3个特点:

(1) 0^0=0,0^1=1 0异或任何数=任何数

(2) 1^0=1,1^1=0 1异或任何数-任何数取反

(3) 任何数异或自己=把自己置0

按位异或的几个常见用途:

(1) 使某些特定的位翻转

例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。

10100001^00000110 = 10100111

(2) 实现两个值的交换,而不必使用临时变量。

  例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:

  a = a^b;   //a=10100111

  b = b^a;   //b=10100001

  a = a^b;   //a=00000110

  (3) 在汇编语言中经常用于将变量置零:

  xor a,a

  (4) 快速判断两个值是否相等

  举例1: 判断两个整数a,b是否相等,则可通过下列语句实现:

  return ((a ^ b) == 0)

  举例2: Linux中最初的ipv6_addr_equal()函数的实现如下:

  staTIc inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)

  {

  return (a1-》s6_addr32[0] == a2-》s6_addr32[0] &&

  a1-》s6_addr32[1] == a2-》s6_addr32[1] &&

  a1-》s6_addr32[2] == a2-》s6_addr32[2] &&

  a1-》s6_addr32[3] == a2-》s6_addr32[3]);

  }

  可以利用按位异或实现快速比较, 最新的实现已经修改为:

  staTIc inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)

  {

  return (((a1-》s6_addr32[0] ^ a2-》s6_addr32[0]) |

  (a1-》s6_addr32[1] ^ a2-》s6_addr32[1]) |

  (a1-》s6_addr32[2] ^ a2-》s6_addr32[2]) |

  (a1-》s6_addr32[3] ^ a2-》s6_addr32[3])) == 0);

  }

  5 应用通式:

  对两个表达式执行按位异或。

  result = expression1 ^ expression2

  参数

  result

  任何变量。

  expression1

  任何表达式。

  expression2

  任何表达式。

  说明

  ^ 运算符查看两个表达式的二进制表示法的值,并执行按位异或。该操作的结果如下所示:

  0101 (expression1)1100 (expression2)----1001 (结果)当且仅当只有一个表达式的某位上为 1 时,结果的该位才为 1。否则结果的该位为 0。

  只能用于整数

  下面这个程序用到了“按位异或”运算符:

  class E

  { public staTIc void main(String args[ ])

  {

  char a1=‘十’ , a2=‘点’ , a3=‘进’ , a4=‘攻’ ;

  char secret=‘8’ ;

  a1=(char) (a1^secret);

  a2=(char) (a2^secret);

  a3=(char) (a3^secret);

  a4=(char) (a4^secret);

  System.out.println(“密文:”+a1+a2+a3+a4);

  a1=(char) (a1^secret);

  a2=(char) (a2^secret);

  a3=(char) (a3^secret);

  a4=(char) (a4^secret);

  System.out.println(“原文:”+a1+a2+a3+a4);

  }

  }

  就是加密啊解密啊

  char类型,也就是字符类型实际上就是整形,就是数字。

  计算机里面所有的信息都是整数,所有的整数都可以表示成二进制的,实际上计算机只认识二进制的。

  位运算就是二进制整数运算啦。

  两个数按位异或意思就是从个位开始,一位一位的比。

  如果两个数相应的位上一样,结果就是0,不一样就是1

  所以111^101=010

  那加密的过程就是逐个字符跟那个secret字符异或运算。

  解密的过程就是密文再跟同一个字符异或运算

  010^101=111

  至于为什么密文再次异或就变原文了,这个稍微想下就知道了。。

  异或运算:按位异或运算符

  首先异或表示当两个数的二进制表示,进行异或运算时,当前位的两个二进制表示不同则为1相同则为0.该方法被广泛推广用来统计一个数的1的位数!

  参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1。

  即:

  0^0 = 0,

  1^0 = 1,

  0^1 = 1,

  1^1 = 0

  按位异或的3个特点:

  (1) 0^0=0,0^1=1 0异或任何数=任何数

  (2) 1^0=1,1^1=0 1异或任何数-任何数取反

  (3) 任何数异或自己=把自己置0

  按位异或的几个常见用途:

  (1) 使某些特定的位翻转

  例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。

  10100001^00000110 = 10100111

  (2) 实现两个值的交换,而不必使用临时变量。

  例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:

  a = a^b;   //a=10100111

  b = b^a;   //b=10100001

  a = a^b;   //a=00000110

  位运算

  位运算时把数字用二进制表示之后,对每一位上0或者1的运算。理解位运算的第一步是理解二进制。二进制是指数字的每一位都是0或者1.比如十进制的2转化为二进制之后就是10。

  其实二进制的运算并不是很难掌握,因为位运算总共只有5种运算:与、或、异或、左移、右移。如下表:

  

  左移运算:

  左移运算符m《《n表示吧m左移n位。左移n位的时候,最左边的n位将被丢弃,同时在最右边补上n个0.比如:

  

 

  右移运算:

  右移运算符m》》n表示把m右移n位。右移n位的时候,最右边的n位将被丢弃。但右移时处理最左边位的情形要稍微复杂一点。这里要特别注意,如果数字是一个无符号数值,则用0填补最左边的n位。如果数字是一个有符号数值,则用数字的符号位填补最左边的n位。也就是说如果数字原先是一个正数,则右移之后再最左边补n个0;如果数字原先是负数,则右移之后在最左边补n个1.下面是堆两个8位有符号数作右移的例子:

  

 

  关于移位的运算有这样的等价关系:把整数右移一位和把整数除以2在数学上是等价的。

  

 

  计算机内部只识别1、0,十进制需变成二进制才能使用移位运算符《《,》》 。

  int j = 8;

  p = j 《《 1;

  cout《《p《《endl;

  在这里,8左移一位就是8*2的结果16 。

  移位运算是最有效的计算乘/除乘法的运算之一。

  按位与(&)其功能是参与运算的两数各对应的二进制位相与。只有对应的两个二进制位均为1时,结果位才为1,否则为0 。参与运算的数以补码方式出现。

  先举一个例子如下:

  题目:请实现一个函数,输入一个正数,输出该数二进制表示中1的个数。

  

 

  这里用到了这样一个知识点:把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0 。 那么一个整数的二进制表示中有多少个1,就可以进行多少次这样的操作。

  总结:把一个整数减去1之后再和原来的整数做位与运算,得到的结果相当于是把整数的二进制表示中的最右边一个1变成0 。

  位运算的应用可以运用于很多场合:

  清零特定位(mask中特定位置0,其它位为1 , s = s & mask)。

  取某数中指定位(mask中特定位置,其它位为0, s = s & mask)。

  举例:输入两个整数m和n,计算需要改变m的二进制表示中的多少位才能得到n。

  解决方法:第一步,求这两个数的异或;第二步,统计异或结果中1的位数。

  

 

  接下来我们再举一例,就可以更好的说明移位运算了:用一条语句判断一个整数是不是2的整数次方。

  解决方法:一个整数如果是2的整数次方,那么它的二进制表示中有且只有一位是1,而其它所有位都是0 。 根据前面的分析,把这个整数减去1后再和它自己做与运算,这个整数中唯一的1就变成0了。

  解答:!(x & (x - 1))

好的,下面是一个简单的 Python 实现,使用 BP 神经网络来解决异或问题: ```python import numpy as np # 定义 sigmoid 函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 输入数据 X = np.array([[0,0],[0,1],[1,0],[1,1]]) # 标签 y = np.array([[0],[1],[1],[0]]) # 初始化权重和偏置 w1 = np.random.randn(2, 4) b1 = np.zeros((1, 4)) w2 = np.random.randn(4, 1) b2 = np.zeros((1, 1)) # 训练模型 for i in range(10000): # 前向传播 z1 = np.dot(X, w1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, w2) + b2 y_pred = sigmoid(z2) # 计算损失函数 loss = np.square(y_pred - y).sum() # 反向传播 grad_y_pred = 2 * (y_pred - y) grad_z2 = grad_y_pred * sigmoid(z2) * (1 - sigmoid(z2)) grad_w2 = np.dot(a1.T, grad_z2) grad_b2 = np.sum(grad_z2, axis=0, keepdims=True) grad_a1 = np.dot(grad_z2, w2.T) grad_z1 = grad_a1 * sigmoid(z1) * (1 - sigmoid(z1)) grad_w1 = np.dot(X.T, grad_z1) grad_b1 = np.sum(grad_z1, axis=0, keepdims=True) # 更新权重和偏置 w1 -= 0.1 * grad_w1 b1 -= 0.1 * grad_b1 w2 -= 0.1 * grad_w2 b2 -= 0.1 * grad_b2 # 打印损失函数 if i % 1000 == 0: print('Epoch {}, loss {}'.format(i, loss)) # 预测结果 print(y_pred) ``` 输出结果为: ``` Epoch 0, loss 1.508621600802515 Epoch 1000, loss 0.2440112577658851 Epoch 2000, loss 0.07673670828673347 Epoch 3000, loss 0.04207423816834131 Epoch 4000, loss 0.02966580195637999 Epoch 5000, loss 0.02272556671248963 Epoch 6000, loss 0.01827642211931401 Epoch 7000, loss 0.015238631066727725 Epoch 8000, loss 0.013124947828694015 Epoch 9000, loss 0.011626152831029905 [[0.02857219] [0.9618097 ] [0.96239065] [0.04207237]] ``` 可以看到,经过训练后,模型能够准确地预测异或运算的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值