一、checkpoint
1、首先设置checkpoint路径,通过SparkContext的setCheckpointDir(dir)设置
2、RDD本身调用checkpoint()方法
3、checkpoint过程:
(1)RDD本身调用checkpoint()方法后,RDDCheckpointData对象会对该RDD进行处理,并将该RDD的状态设置
MarkedForCheckpoint;
(2)RDD所在的job运行结束后,会调用该job中最后一个RDD的doCheckpoint()方法,该方法沿着finalRDD的
lineage(RDD的血丝关系,依赖链条)向上查找标记为MarkedForCheckpoint的RDD,并将其标记为CheckpointingInProgress
(3)启动一个单独的job,将lineage中标记为CheckpointingInProgress的RDD进行checkpoint操作,也就是将其数据写入
文件系统中;
(4)将RDD的数据进行checkpoint之后,会改变RDD的lineage,即会清除掉该RDD所有的依赖RDD,将其父RDD设置为
一个CheckpointRDD,而且该RDD状态变成Checkpointed。
4、checkpoint与持久化的区别
持久化:将数据保存在BlockManager中,但rdd的lineage(依赖关系)没有改变,数据丢失概率大
checkpoint:将数据保存在高容错的文件系统中,rdd的lineage发生改变
5、实现checkpoint之后,在后续某个task又调用该RDD的iterator()方法时,就实现了高容错机制,即使rdd的持久
化数据丢失,或者没有进行持久化,但可以通过readCheckpointOrCompute()方法,优先从该RDD的父RDD(CheckpointRDD)
中读取数据。
6、通常对要进行checkpoint的RDD,先进行persist(StroageLevel.DISK_ONLY);因为RDD持久化后,当进行checkpoint时,
就可以直接将该RDD的数据checkpoint到文件系统中,否则需要重新计算出该RDD后才能进行checkpoint操作。