Python案例代码 | 使用正则表达式判别微博用户mbti类型

使用Python爬虫采集 「微博搜索」中含mbti信息的推文, 使用正则表达式判别用户mbti类型。相比实验室做实验或者发调查问卷,这种方式收集到的用户类别是非常自然且真实的。今日爬虫不是今日主题,就不做分享了。

import pandas as pd

#采集自微博搜索中含mbti类型的推文
df = pd.read_csv('mbti_test.csv')
#剔除content列中的nan数据
df.dropna(inplace=True, subset=['content'])
df

正则表达式练习题

  1. 提取含有mbti的记录

  2. 提取出含mbti类型出现的前后5个字符的文本 (前5个字符,后5个字符, 含mbti本身, 窗体最长的长度是14)

  3. 识别出含mbti的记录中对应的mbti类型, 未识别的标记为"未识别"

一、 提取含有mbti的记录

实现方法有两种

  1. pd.Series.str.contains(regex_pattern)

  2. 定义一个正则处理函数regex_func, 使用 pd.Series.apply(regex_func)

正则表达式含义

mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]'
  • [ 和 ]:这是字符类(character class)的起始和结束标记,表示要匹配方括号内的任何字符。

  • infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj:这是一个字符类内的字符集合,用于匹配MBTI类型词汇。每个MBTI类型词汇都以竖线 | 分隔,表示“或”的关系。这意味着正则表达式会匹配其中任何一个MBTI类型词汇。

  • +:这是一个量词,表示匹配前面的字符集合(MBTI类型词汇)一次或多次。它使正则表达式可以匹配包含一个或多个MBTI类型词汇的文本。

mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]'

df.content.str.contains(mbtis)

0 True
1 True
2 True
3 True
4 True

495 False
496 False
497 False
498 False
499 False
Name: content, Length: 497, dtype: bool

import re


def has_mbti(text):
    mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]+'

    if re.findall(mbtis, text):
        return True
    else:
        return False
    
    
df.content.apply(has_mbti)

0 True
1 True
2 True
3 True
4 True

495 False
496 False
497 True
498 False
499 True
Name: content, Length: 497, dtype: bool

df['hasMBTI'] = df['content'].apply(has_mbti)
df

二、mbti前后内容

提取出含mbti类型出现的前后5个字符的文本(前5个字符,后5个字符, 含mbti本身, 窗体最长的长度是14)。

这样后续的分析任务,就可以通过查看mbti字眼前后出现的字符,来更新正则表达式。

正则表达式含义

mbti_win = "(.{0,5}(?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj).{0,5})"
  • ()这些括号用于将整个匹配结果捕获为一个分组

  • .{0,5} :这是一个量词,表示匹配前面的字符(.表示匹配任意字符)零次到五次。这部分用于匹配前面的文本,确保最多匹配前面的五个字符。

  • (?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj):这是一个非捕获分组,用于将多个MBTI类型词汇用 | 连接起来,表示匹配其中任何一个。

  • .{0,5} :这部分同样是一个量词,表示匹配后面的字符,确保最多匹配后面的五个字符。

def mbti_window(text):
    #识别mbti的正则表达式 
    mbti_win = "(.{0,5}(?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj).{0,5})"

    try:
        return re.findall(mbti_win, text)[0]
    except:
        return "未识别"

df['MBTI_win'] = df['content'].apply(mbti_window)
df

三、识别mbti类型

刚刚的代码比较粗糙,只能判断文本中是否有mbti信息,但并不能判断该用户是否为某种mbti类型。

微博文本中,只有 //@ 前字符内容是微博用户所写内容。为了识别用户的mbti类型,可以先将我们看到的表达方式列举一下

  • ``我是[mbti]

  • 自己是[mbti]

  • 从[mbti]变为[mbti]

  • 一直是[mbti]

  • [mbti]我

  • 本[mbti]

可以基于此设计一个严格的正则表达式,能识别到的记录,肯定能判断该用户的mbti类型。未识别到的标记为 “未识别”

正则表达式含义

mbti_regex = "[我|自己|变成|一直|是|本]*(infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj)[我|俺|本|自己]*"   
  • [我|自己|变成|一直|是|本]*:这部分是一个字符集合,用于匹配前面的字符(关键词)。方括号 [...] 表示字符类,其中的字符是可选的,并且 * 表示匹配零次或多次。这意味着它可以匹配零个或多个出现在方括号中的字符,例如可以匹配"我"、“自己”、“变成”、“一直”、“是”、"本"等这些关键词。

  • (infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj) :这是一个分组,其中包含了MBTI类型词汇,用竖线 | 分隔,表示"或"的关系。这部分用于匹配任意一个MBTI类型词汇。

  • [我|俺|本|自己]* :这部分与第1部分类似,是一个字符集合,用于匹配后面的字符(关键词)。同样,方括号 [...] 表示字符类,其中的字符是可选的,并且 * 表示匹配零次或多次。

def identify_mbti(text):
    if '//@' in text:
        new_text = text.split('//@')[0]
    else:
        new_text = text

    #识别mbti的正则表达式 
    mbti_regex = "[我|自己|变成|一直|是|本]*(infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj)[我|俺|本|自己]*"

    try:
        return re.findall(mbti_regex, text)[0]
    except:
        return "未识别"

#mbti类型
df['MBTI_Cat'] = df['content'].apply(identify_mbti)
df

#各类型记录数   
df['MBTI_Cat'].value_counts()   

MBTI_Cat
未识别 297
infp 35
isfj 20
enfp 18
intp 17
isfp 16
intj 14
entp 12
entj 11
infj 11
enfj 8
estj 8
istp 8
istj 7
esfp 6
estp 5
esfj 4
Name: count, dtype: int64

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述
若有侵权,请联系删除
好的,我可以帮你实现这个程序。首先,我们需要安装所需的库,包括pandas、nltk和scikit-learn。 ```python !pip install pandas nltk scikit-learn ``` 接下来,我们需要准备数据集。我选择了Kaggle上的一个MBTI类型数据集,里面包含了用户的一些社交媒体帖子和对应的MBTI类型。你可以在这里下载数据集:https://www.kaggle.com/datasnaek/mbti-type 接着,我们需要进行数据预处理。我们将使用nltk库对文本进行分词,并使用TF-IDF特征提取器将文本转换为数字表示形式。 ```python import pandas as pd import nltk from sklearn.feature_extraction.text import TfidfVectorizer # 下载nltk的停用词 nltk.download('stopwords') # 读取数据集 df = pd.read_csv('mbti_1.csv') # 对文本进行分词和预处理 stop_words = nltk.corpus.stopwords.words('english') vectorizer = TfidfVectorizer(stop_words=stop_words) X = vectorizer.fit_transform(df['posts']) y = df['type'] ``` 接下来,我们需要训练一个分类器来预测MBTI类型。我们将使用scikit-learn库中的MultinomialNB分类器。 ```python from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练分类器 clf = MultinomialNB() clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 最后,我们将编写一个交互式程序,让用户输入一些文本,并预测他们的MBTI类型。我们还将把预测结果写入一个csv文件。 ```python import csv # 打开csv文件 with open('results.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(['text', 'mbti']) while True: # 从用户输入中获取文本 text = input('Enter some text: ') if not text: break # 将文本转换为数字表示形式 x = vectorizer.transform([text]) # 预测MBTI类型 mbti = clf.predict(x)[0] # 输出结果,并写入csv文件 print('MBTI type:', mbti) writer.writerow([text, mbti]) ``` 这样,我们就可以运行该程序,与用户进行交互,并将预测结果写入csv文件了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值