1.使用#号打印的自己名字是:PYTHON,先定义一下A-z的字母图案,然后if判断打印相关的字母即可。
# 接收用户输入
# name = input("输入你的名字: \n\n").upper()
# 字母转大写
name = 'Python'.upper()
print(f'要打印的名字是:{name}')
length = len(name)
for x in range(0, length):
c = name[x]
if (c == "A"):
print("..######..\n..#....#..\n..######..", end=" ")
print("\n..#....#..\n..#....#..\n\n")
elif (c == "B"):
print("..######..\n..#....#..\n..#####...", end=" ")
print("\n..#....#..\n..######..\n\n")
elif (c == "C"):
print("..######..\n..#.......\n..#.......", end=" ")
print("\n..#.......\n..######..\n\n")
elif (c == "D"):
print("..#####...\n..#....#..\n..#....#..", end=" ")
print("\n..#....#..\n..#####...\n\n")
elif (c == "E"):
print("..######..\n..#.......\n..#####...", end=" ")
print("\n..#.......\n..######..\n\n")
elif (c == "F"):
print("..######..\n..#.......\n..#####...", end=" ")
print("\n..#.......\n..#.......\n\n")
elif (c == "G"):
print("..######..\n..#.......\n..#.####..", end=" ")
print("\n..#....#..\n..#####...\n\n")
elif (c == "H"):
print("..#....#..\n..#....#..\n..######..", end=" ")
print("\n..#....#..\n..#....#..\n\n")
elif (c == "I"):
print("..######..\n....##....\n....##....", end=" ")
print("\n....##....\n..######..\n\n")
elif (c == "J"):
print("..######..\n....##....\n....##....", end=" ")
print("\n..#.##....\n..####....\n\n")
elif (c == "K"):
print("..#...#...\n..#..#....\n..##......", end=" ")
print("\n..#..#....\n..#...#...\n\n")
elif (c == "L"):
print("..#.......\n..#.......\n..#.......", end=" ")
print("\n..#.......\n..######..\n\n")
elif (c == "M"):
print("..#....#..\n..##..##..\n..#.##.#..", end=" ")
print("\n..#....#..\n..#....#..\n\n")
elif (c == "N"):
print("..#....#..\n..##...#..\n..#.#..#..", end=" ")
print("\n..#..#.#..\n..#...##..\n\n")
elif (c == "O"):
print("..######..\n..#....#..\n..#....#..", end=" ")
print("\n..#....#..\n..######..\n\n")
elif (c == "P"):
print("..######..\n..#....#..\n..######..", end=" ")
print("\n..#.......\n..#.......\n\n")
elif (c == "Q"):
print("..######..\n..#....#..\n..#.#..#..", end=" ")
print("\n..#..#.#..\n..######..\n\n")
elif (c == "R"):
print("..######..\n..#....#..\n..#.##...", end=" ")
print("\n..#...#...\n..#....#..\n\n")
elif (c == "S"):
print("..######..\n..#.......\n..######..", end=" ")
print("\n.......#..\n..######..\n\n")
elif (c == "T"):
print("..######..\n....##....\n....##....", end=" ")
print("\n....##....\n....##....\n\n")
elif (c == "U"):
print("..#....#..\n..#....#..\n..#....#..", end=" ")
print("\n..#....#..\n..######..\n\n")
elif (c == "V"):
print("..#....#..\n..#....#..\n..#....#..", end=" ")
print("\n...#..#...\n....##....\n\n")
elif (c == "W"):
print("..#....#..\n..#....#..\n..#.##.#..", end=" ")
print("\n..##..##..\n..#....#..\n\n")
elif (c == "X"):
print("..#....#..\n...#..#...\n....##....", end=" ")
print("\n...#..#...\n..#....#..\n\n")
elif (c == "Y"):
print("..#....#..\n...#..#...\n....##....", end=" ")
print("\n....##....\n....##....\n\n")
elif (c == "Z"):
print("..######..\n......#...\n.....#....", end=" ")
print("\n....#.....\n..######..\n\n")
elif (c == " "):
print("..........\n..........\n..........", end=" ")
print("\n..........\n\n")
elif (c == "."):
print("----..----\n\n")
输出内容:
要打印的名字是:PYTHON
..######..
..#....#..
..######..
..#.......
..#.......
..#....#..
...#..#...
....##....
....##....
....##....
..######..
....##....
....##....
....##....
....##....
..#....#..
..#....#..
..######..
..#....#..
..#....#..
..######..
..#....#..
..#....#..
..#....#..
..######..
..#....#..
..##...#..
..#.#..#..
..#..#.#..
..#...##..
2.打印九九乘法表 三角形 金字塔 圣诞树 倒三角形 菱形
# 打印九九乘法口诀表
for i in range(1, 10): # 乘法表的行、起始值从1开始
for j in range(1, i + 1): # 表示每一行的表达式、从1开始、到j+1
print('{}*{}={}'.format(j, i, i * j), end=' ') # 输出语句{}占位、输出表达式
print(' ')
# 打印金字塔(正三角形)
n = 10 # 行数
str = '*' # 图形
for i in range(1, n):
for j in range(1, n - i): # 输出空格
print(' ', end='')
for j in range(0, 2 * i - 1): # 输出字符
print(str, end='')
print() # 换行
# 打印圣诞树:在金字塔的基础上加上树干即可
n = 10 # 行数
str = '*' # 图形
height = 5 # 树干高度
for i in range(1, n):
for j in range(1, n - i): # 输出空格
print(' ', end='')
for j in range(0, 2 * i - 1): # 输出字符
print(str, end='')
print() # 换行
for h in range(height):
print(' ' * (n - 2) + '|')
# 打印倒金字塔(倒三角形)
n = 10 # 行数
str = '*' # 图形
for i in range(n):
for j in range(i): # 输出空格
print(end=' ')
for j in range(i, n): # 输出字符
print(str, end=' ')
print("") # 换行
# 打印菱形
n = 10 # 行数
str = '*' # 图形
for i in range(n):
for j in range(i, n - 1): # 打印空格
print('', end='\t')
for k in range(n * 2 - 1): # 打印图形
print(str, end='\t')
print('') # 换行
输出结果:
1*1=1
1*2=2 2*2=4
1*3=3 2*3=6 3*3=9
1*4=4 2*4=8 3*4=12 4*4=16
1*5=5 2*5=10 3*5=15 4*5=20 5*5=25
1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36
1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49
1*8=8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64
1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81
*
***
*****
*******
*********
***********
*************
***************
*****************
*
***
*****
*******
*********
***********
*************
***************
*****************
|
|
|
|
|
* * * * * * * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * *
* * * * * *
* * * * *
* * * *
* * *
* *
*
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
3.打印心型图案
import numpy as np
x = y = a = 0
for y in np.arange(1.5, -1.6, -0.1):
for x in np.arange(-1.5, 1.55, 0.05):
a = x * x + y * y - 1
if a * a * a - x * x * y * y * y <= 0.0:
print('*', end='')
else:
print(' ', end='')
print()
4.打印杨辉三角:杨辉三角是中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现的一种数学概念。它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
杨辉三角的具体内容是:每个数等于它上方两数之和。每行数字左右对称,由1开始逐渐变大。第n行的数字有n项。前n行共[(1+n)n]/2 个数。第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
在数学领域,杨辉三角在组合数学、代数学和数论中都有重要应用。在组合数学中,杨辉三角的数字可以用于计算组合数,例如从n个不同元素中取出k个元素的组合数。在代数学中,杨辉三角可以用于展示二项式定理,例如计算(a+b)^n的展开式中各项的系数。在数论中,杨辉三角中的数字可以用于计算二项式系数的奇偶性等。
# 计算杨辉三角 定义法
# n = eval(input("输入要打印的行数:"))
n = 10
triangle = [[1], [1, 1]]
for i in range(2, n): # 已经给出前两行,求剩余行
pre = triangle[i-1] # 上一行
cul = [1] # 定义每行第一个元素
for j in range(i-1): # 算几次
cul.append(pre[j]+pre[j+1]) # 每个数字等于上一行的左右两个数字之和。
cul.append(1) # 添加每行最后一个元素
triangle.append(cul)
print("普通输出:{}".format(triangle))
for i in range(n): # 按等边三角形格式输出
s = " "*(n-i-1)
for j in triangle[i]:
s = s + str(j)+" "
print(s)
# 方法2,杨辉三角结果列表
def print_pascal_triangle(n):
result = []
for i in range(n):
row = [1] # 每一行的第一个元素始终为1
if result: # 如果列表不为空
last_row = result[-1] # 获取上一行
# 利用上一行计算当前行的其他元素,除了首尾元素,每个元素等于上一行的对应元素加上上一行对应元素前一个元素的值
row.extend([sum(pair) for pair in zip(last_row, last_row[1:])])
row.append(1) # 每一行的最后一个元素始终为1
result.append(row) # 将当前行添加到结果列表
# 打印杨辉三角
for j in result:
print(j)
print_pascal_triangle(10)
输出内容:
普通输出:[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1], [1, 6, 15, 20, 15, 6, 1], [1, 7, 21, 35, 35, 21, 7, 1], [1, 8, 28, 56, 70, 56, 28, 8, 1], [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
[1, 8, 28, 56, 70, 56, 28, 8, 1]
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
