AI绘画自2023年火爆至今已经有了一段时间,在这一年中我们工作室也积极拥抱新技术,学习AI工具的使用方法。
在这里,我们将以推文的方式记录,AI相关的使用心得,是记录也是分享。
以下是这一年中的部分作品,以下图片均由团队成员使用
AI绘画软件Stable diffusion(后简称SD)生成
风景类
AI绘画对于场景整体氛围把控十分优秀
但受训练集影响,题材场景比较局限
特定场景的构图,需要使用额外的控制器
手绘风格大场景(图片来源:SD生成)
AI模型的切换可以转化不同风格
以下图片使用的是动画类模型ReV Animated
写实风格-秋日风景(图片来源:SD生成)
角色类
角色类题材是AI相当擅长的领域
但手部处理仍存在问题需借助插件和后期处理
以下效果是借助三视图lora模型实现
动漫角色三视图(图片来源:SD生成)
游戏场景类
微缩场景、游戏页面类
可以直接通过关键词Miniature生成
具体效果受大模型影响,部分模型无法实现此类场景
游戏场景设计(图片来源:SD生成)
生成技巧分享
SD作为主流的AI绘画软件,以高度可控性而著名
此外相比同类软件Midjourney,Stble diffuison还有一个突出优势就是可以生成高画质图像,
在这里向大家分享SD图像放大的相关技巧。
( 注:下列技巧针对SD文生图的图片进行放大 )
方法一:文生图
control net tile +画幅调整
此类方法操作最为直接,使用controlnet插件控制画面+画幅直接调整实现适用于画面小画幅放大,对显卡要求较高,放大效果中等,能够有效增加细节
方法二:文生图
高清修复
高清修复是SD内置的放大方式,
常用的放大算法为:
R-ESRGAN 4x+、R-ESRGAN 4x+ Anime6B
适用于画面内容丰富,对显卡要求较高,放大效果极佳,调整放大算法控制画面细节程度。
方法三:图生图
Ultimate SD upscale
Ultimate SD upscale是一个放大插件,通过分块放大的方式实现画面的超分辨率放大
适用于画面的大幅放大,算法优化对显卡要求中等,放大效果受原图影响较大。
方法四:图生图
Multi Diffusion+tile VAE
Multi Diffusion+tile VAE两者是SD的扩展,启用后姜优化算法,实现显卡低负荷放大图像
适用于低配显卡放大图像(或画面超分辨率放大),对显卡要求低,放大效果好。
做为算法优化插件可与前几种方法混合使用,降低显卡压力。
效果对比
四类方法各有优劣,可混合搭配使用,实现画面效果优化放大
此外也可以在使用一种放大方式后继续使用其他放大方式,实现4k、8k效果
以上从左至右是一个较为规范合理的放大顺序
前期通过controlnet与高清修复增加细节,
后续用对显卡压力较小的算法提高像素
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
