一、题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
二、代码
class Solution {
public int maxArea(int[] height) {
if (height == null || height.length == 0) {
return 0;
}
int l = 0;
int r = height.length - 1;
int max = 0;
while (l < r) {
// 每次计算当前窗口上能后装下的水是否能超过最大值,能超过就更新max
max = Math.max(max, Math.min(height[l], height[r]) * (r - l));
// 向中间移动高度较小的那个窗口,这样才有推高最大值的可能性。优先保留高度较高的板子
if (height[l] < height[r]) {
l++;
} else {
r--;
}
}
return max;
}
}
三、解题思路
利用贪心的思想,引入窗口结构,按照贪心策略去移动窗口,计算每一个窗口上能够放多少水,找到最大的那个就是答案。只关注它推高答案的可能性,并不是说这个位置一定能推高答案,整个滑动窗口还是要把所有的位置都划过一遍的,向中间移动高度较小的那个窗口,这样才有推高最大值的可能性。优先保留高度较高的板子。