【LeetCode】递增的三元子序列 [M](动态规划)

166 篇文章 1 订阅

334. 递增的三元子序列 - 力扣(LeetCode)

一、题目

给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。

如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false 。

示例 1:

输入:nums = [1,2,3,4,5]
输出:true
解释:任何 i < j < k 的三元组都满足题意

示例 2:​​​​​​​

输入:nums = [5,4,3,2,1]
输出:false
解释:不存在满足题意的三元组

示例 3:
输入:nums = [2,1,5,0,4,6]
输出:true
解释:三元组 (3, 4, 5) 满足题意,因为 nums[3] == 0 < nums[4] == 4 < nums[5] == 6

提示:

  • 1 <= nums.length <= 5 * 105
  • -231 <= nums[i] <= 231 - 1

进阶:你能实现时间复杂度为 O(n) ,空间复杂度为 O(1) 的解决方案吗?

二、代码

class Solution {
    public boolean increasingTriplet(int[] nums) {
        if (nums == null && nums.length < 3) {
            return false;
        }

        int n = nums.length;
        // ends数组
        // ends[i]表示 : 目前所有长度为i+1的递增子序列的最小结尾数
        int[] end = new int[n + 1];
        // 根据含义, 一开始ends[0] = arr[0]
        end[0] = nums[0];
        // ends有效区范围是0...right,right往右为无效区
        // 所以一开始right = 0, 表示有效区只有0...0范围
        int right = 0;
        // 最长递增子序列的长度
        // 全局变量,抓取每一步的答案,取最大的结果
        int max = 1;

        for (int i = 0; i < n; i++) {
            int l = 0;
            int r = right;
            // 在ends[l...r]范围上二分
            // 如果 当前数(arr[i]) > ends[m],砍掉左侧
            // 如果 当前数(arr[i]) <= ends[m],砍掉右侧
            // 整个二分就是在ends里寻找 >= 当前数(arr[i])的最左位置
            // 就是从while里面出来时,l所在的位置。
            // 如果ends中不存在 >= 当前数(arr[i])的情况,将返回有效区的越界位置
            // 也就是从while里面出来时,l所在的位置,是有效区的越界位置
            // 比如 : ends = { 3, 5, 9, 12, 再往右无效}
            // 如果当前数为8, 从while里面出来时,l将来到2位置
            // 比如 : ends = { 3, 5, 9, 12, 再往右无效}
            // 如果当前数为13, 从while里面出来时,l将来到有效区的越界位置,4位置
            while (l <= r) {
                int mid = (l + r) >> 1;
                if (nums[i] > end[mid]) {
                    l = mid + 1;
                } else {
                    r = mid - 1;
                }
            }
            // 从while里面出来,看l的位置
            // 如果l比right大,说明扩充了有效区,那么right变量要随之变大
            // 如果l不比right大,说明l没有来到有效区的越界位置,right不变
            right = Math.max(right, l);
            // l的位置,就是当前数应该填到ends数组里的位置(有两种情况,是将l位置原有的数修改的更小,或者是将nums[i]放到一个新扩充的位置)
            end[l] = nums[i];
            // 更新最大递增子序列长度
            max = Math.max(max, l + 1); 
        }
        // 最长递增子序列长度大于等于3就是true
        return max >= 3;
    }
}

三、解题思路 

一般子序列的这种题我们就使用动态规划求解。以i位置结尾的子序列怎么怎么样,以这个角度去写动态规划。只要把所有位置作为某一个子序列的结尾的最大值都求出来,然后在里面取最大值,肯定就能把最终答案求出来,不会有遗漏子序列的情况。

这个优化点就是引入了end数组,这个数组将我们需要的信息有序化,进而可以使用二分法实现快速查找,就不用在dp数组中进行遍历查找了,因为dp数组中的数据并不是有序的,所以不能用二分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值