Matlab
文章平均质量分 57
Matlab
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
普通网友
这个作者很懒,什么都没留下…
展开
-
Simulink自定义函数模块学习和应用:使用S函数设计简单的QPSK调制解调通信链路(Matlab)
在这个项目中,我们将实现一个简单的QPSK调制解调系统,以便更好地理解这个技术的工作原理。从Simulink库浏览器中拖动和放置信号源(Signal Source)、QPSK调制器(QPSK Modulator)、信道(Channel)和QPSK解调器(QPSK Demodulator)模块到模型中。我们将使用Simulink中的自定义函数模块,具体地说,我们将使用S函数来实现这个通信系统。连接这些模块以建立通信链路。将信号源的输出连接到QPSK调制器的输入,然后将调制器的输出连接到信道的输入。原创 2023-09-25 00:04:51 · 578 阅读 · 0 评论 -
基于Matlab的语音短时频域分析
在语音信号处理中,短时频域分析是一种常用的技术,它能够提供语音信号的时频信息,对于许多语音应用具有重要意义。本文将介绍如何使用Matlab进行语音短时频域分析,并提供相应的源代码。通过以上步骤,我们可以使用Matlab对语音信号进行短时频域分析,并可视化其时频特征。在上述代码中,我们使用了Hamming窗口函数对每个窗口的语音信号进行加窗处理。除了短时频谱图,我们还可以计算和显示语音信号的语谱图,即时频能量分布图。接下来,我们可以绘制短时频谱图来可视化语音信号的时频特征。函数用于计算短时频谱,并返回频谱。原创 2023-09-24 21:26:05 · 226 阅读 · 1 评论 -
基于鼠群优化的机器人路径规划算法
本文介绍了基于鼠群优化的机器人路径规划算法,并提供了相应的MATLAB代码示例。该算法通过模拟鼠群行为了优化机器人路径规划,我们可以借鉴自然界中鼠群的行为,并应用鼠群优化算法(Rat Swarm Optimization,RSO)。接下来,我们将详细介绍基于鼠群优化的机器人路径规划算法,并附上相应的MATLAB代码。算法的基本思想是模拟鼠群在搜索食物时的行为,通过合作与竞争的机制,逐步优化路径。本文介绍了基于鼠群优化的机器人路径规划算法,并提供了相应的MATLAB代码示例。该算法通过模拟鼠群行为,利用合。原创 2023-09-24 20:28:56 · 858 阅读 · 1 评论 -
基于Matlab的稀疏表示KSVD图像去噪
omp函数的第一个输入参数是字典D,第二个输入参数是要表示的图像块,第三个输入参数是字典D的转置乘以字典D,第四个输入参数是稀疏度,第五个输入参数是正则化参数lambda。最终得到的稀疏表示系数矩阅读了您的要求,以下是基于Matlab的稀疏表示KSVD图像去噪的详细文章,包含相应的源代码。ksvd函数的第一个输入参数是图像块,第二个参数是字典的大小,第三个参数是迭代次数。omp函数的第一个输入参数是字典D,第二个输入参数是要表示的图像块,第三个输入参数是字典D的转置乘以字典D,第。原创 2023-09-24 18:33:08 · 111 阅读 · 1 评论 -
蚁群算法优化个体适应度值的MATLAB实现
该算法模拟了蚂蚁在寻找食物时释放信息素与感知信息的过程,并通过信息素的正反馈作用来引导蚂蚁群体寻找最优解。根据具体的问题和目标函数,你可能需要对其中的一些步骤进行修改和优化,以适应不同的求解需求。在蚁群算法中,个体的适应度值是评估解的好坏程度的指标。根据蚂蚁的搜索过程和信息素的更新规则,我们可以在每次迭代中更新信息素。这里我们使用最简单的信息素更新规则,即每次迭代都对所有路径上的信息素进行挥发和更新。在蚁群算法的迭代结束后,我们可以通过输出最优解的个体适应度值和对应的解向量,对结果进行分析和评估。原创 2023-09-24 17:47:17 · 93 阅读 · 1 评论 -
基于MATLAB集成正态云和动态扰动的哈里斯鹰优化算法求解单目标优化问题
在本文中,我们将介绍一种基于MATLAB的优化算法——哈里斯鹰优化算法(Harris’ hawk optimization algorithm),该算法采用正态云和动态扰动机制来求解单目标优化问题。我们将提供相应的源代码,并详细阐述算法的实现过程。然后,通过迭代更新位置的过程,计算每个鹰的适应度值,并选择新的最优位置。在位置更新过程中,我们引入了动态扰动机制,通过随机数来调整鹰的位置,增加搜索的多样性和全局探索能力。在代码中,我们首先设置了鹰的数量和最大迭代次数,并初始化了搜索空间范围和鹰群的初始位置。原创 2023-09-24 16:03:26 · 51 阅读 · 1 评论 -
基于遗传优化的SC译码算法及其MATLAB代码
通过以上的MATLAB代码实现,我们可以基于遗传优化算法对SC译码进行优化,从而提高系统的误码性能。当然,实际的应用中还需要考虑更多的细节和调优,但这里提供的代码示例可以作为一个起点,帮助你进一步研究和实践基于遗传优化的SC译码算法。遗传优化算法通过迭代更新种群,每一代都选择适应度较好的个体,并通过交叉和变异操作生成新的个体。在实际应用中,你需要根据具体的SC译码算法和问题要求,完善相应的函数实现。最后,我们将以上的函数整合在一起,并进行调用,以实现基于遗传优化的SC译码算法。函数用于选择父代个体,原创 2023-09-24 14:23:04 · 90 阅读 · 1 评论 -
基于MATLAB的策略迭代算法优化重构机械臂容错跟踪控制问题
在本文中,我们将使用MATLAB编写策略迭代算法来优化重构机械臂的容错跟踪控制问题。我们将首先介绍重构机械臂的容错跟踪控制问题,然后详细说明策略迭代算法的实现步骤,并提供相应的MATLAB源代码。在每个时间步长,我们可以计算机械臂的状态和控制信号,并使用性能指标(如跟踪误差或控制能量)来评估策略的效果。重构机械臂容错跟踪控制问题的目标是设计一个控制策略,使机械臂能够在存在不确定性和扰动的情况下实现精确的轨迹跟踪。通过以上代码,我们可以实现基于MATLAB的策略迭代算法来求解重构机械臂容错跟踪控制优化问题。原创 2023-09-24 12:47:26 · 101 阅读 · 1 评论 -
基于Matlab的遗传算法优化多尺度排列熵参数的数字信号去噪
MPSE是一种用于信号分析的统计量,它结合了信号的多尺度分解和排列熵计算。多尺度分解将信号分解成不同尺度的子信号,而排列熵用于衡量子信号中的随机性和复杂性。本文将介绍一种基于Matlab的遗传算法优化多尺度排列熵参数的数字信号去噪方法。以上是基于Matlab的遗传算法优化多尺度排列熵参数的数字信号去噪的详细介绍和源代码。通过遗传算法优化MPSE参数,我们可以得到最佳的参数组合,从而实现对数字信号的有效去噪。在本文中,我们将使用遗传算法来优化MPSE的参数,以实现数字信号的去噪。原创 2023-09-24 11:44:02 · 199 阅读 · 0 评论 -
MATLAB错误:nlinfit中的MODELFUN应返回与原始数据长度相同的拟合值向量
其中,xData和yData是输入的原始数据,modelFunction是用户定义的模型函数,initialParameters是模型参数的初始值。确保将正确的参数传递给nlinfit函数,并且输入数据的长度与模型函数的输出长度匹配。确保MODELFUN函数返回与输入数据相同长度的拟合值向量,并检查输入数据和模型参数的长度是否正确匹配。然后,通过生成示例数据xData和yData,定义模型参数的初始值initialParameters,并使用nlinfit函数进行非线性拟合。原创 2023-09-24 09:37:47 · 282 阅读 · 0 评论 -
基于模板匹配算法的车辆出入库计时系统(附带MATLAB代码)
车辆出入库计时系统是一种常见的应用,它可以用于监控和记录车辆在停车场或其他场所的出入情况。在本文中,我们将介绍如何使用模板匹配算法实现一个简单的车辆出入库计时系统,并提供相应的MATLAB代码。模板匹配是一种基于图像相似度的算法,它可以用于在一幅图像中查找特定的模板图像。在车辆出入库计时系统中,我们可以将模板设置为车辆的前部或后部图像,然后通过匹配实时视频流中的图像来检测车辆的出入。通过实现基于模板匹配算法的车辆出入库计时系统,您可以监控和记录车辆的出入情况,并获得每辆车的停留时间。原创 2023-09-24 07:53:26 · 77 阅读 · 0 评论 -
基于RRT和APF的机器人动态避障算法及Matlab仿真
RRT算法用于快速生成机器人的运动路径,而APF算法用于计算机器人在运动过程中的势场,以避免与障碍物碰撞。APF算法基于人工势场的概念,将机器人周围的障碍物视为对机器人施加的势场,并通过计算机器人当前位置的合力来指导机器人的移动。(2)在每个路径点上,使用APF算法计算机器人的合力,并将机器人移动到合力指导的位置。(1)计算机器人与障碍物之间的斥力,斥力的大小与机器人与障碍物的距离成反比。(2)计算机器人与目标点之间的引力,引力的大小与机器人与目标点的距离成正比。(1)使用RRT算法生成机器人的运动路径。原创 2023-09-24 06:28:24 · 1522 阅读 · 0 评论 -
Matlab 维网格数据读取写入
本文介绍了如何在Matlab中读取和写入维网格数据。通过使用"ncread"函数和"ncwrite"函数,我们可以方便地处理和操作维网格数据。在上面的代码中,我们首先指定了NetCDF文件的路径和要写入的变量名。最后,我们使用"ncwrite"函数将数据写入NetCDF文件中的指定变量。要读取维网格数据,我们可以使用Matlab中的"ncread"函数。然后,我们使用"ncread"函数将数据读取到变量"data"中。要将数据写入维网格数据文件,我们可以使用Matlab中的"ncwrite"函数。原创 2023-09-24 06:07:39 · 139 阅读 · 0 评论 -
深度信念网络(DBN)与支持向量机(SVM)在电池容量SOC预测中的应用
其中,深度信念网络(Deep Belief Network,DBN)和支持向量机(Support Vector Machine,SVM)是两种常用的机器学习方法。本文将介绍如何使用DBN和SVM结合进行电池容量SOC的预测,并提供相应的Matlab源代码。整个过程包括了数据准备、DBN的构建与特征提取、SVM的训练与预测,以及性能评估。整个过程包括数据准备、DBN的构建与特征提取、SVM的训练与预测,以及性能评估。使用训练好的SVM模型,对测试集进行SOC值的预测。三、支持向量机(SVM)的训练和预测。原创 2023-09-24 04:17:41 · 123 阅读 · 0 评论 -
Matlab代码:华氏温度转摄氏温度
本文介绍了如何使用Matlab编写一个简单的程序,将华氏温度转换为摄氏温度。通过合适的转换公式和Matlab的计算能力,我们可以方便地进行温度单位的转换。在科学和工程领域中,温度单位的转换是一项常见的任务。在本文中,我们将介绍如何使用Matlab编写一个简单的程序,将华氏温度转换为摄氏温度。摘要:本文介绍了如何使用Matlab编写一个简单的程序,将华氏温度转换为摄氏温度。通过使用合适的转换公式,我们可以方便地在Matlab中进行温度单位的转换。关键词:Matlab,华氏温度,摄氏温度,转换公式。原创 2023-09-24 01:56:13 · 898 阅读 · 0 评论 -
基于MATLAB的信号处理滤波系统模拟
MATLAB提供了丰富的信号处理工具和函数,使您能够轻松地进行信号处理和滤波的模拟与实现。信号处理是现代通信系统中的关键技术之一,而滤波是信号处理中常用的技术之一。通过运行上述代码,我们可以得到输入信号和滤波后的信号的波形图。输入信号是一个正弦波,而滤波后的信号将会是一个截止频率为10Hz的低通滤波后的信号。在本例中,我们将使用一个简单的正弦波作为输入信号。最后,我们可以通过绘制输入信号和滤波后的信号的波形图来观察滤波效果。上述代码将输入信号和滤波后的信号的波形图绘制在两个子图中。滤波后的信号存储在变量。原创 2023-09-24 01:24:52 · 138 阅读 · 0 评论 -
机器人栅格地图路径规划算法的实现(基于A*算法结合Floyd和动态窗口法)附带MATLAB代码
本文将介绍一种基于A*算法结合Floyd和动态窗口法的路径规划算法,并提供相应的MATLAB代码实现。动态窗口法是一种改进A*算法的启发式搜索方法。动态窗口法的基本思想是根据机器人当前的位置和目标位置之间的距离,动态调整启发式估计函数的权重,使得机器人更倾向于朝向目标位置。Floyd算法的基本思想是通过中转节点的方式,逐步更新节点之间的距离,直到得到最短路径。开放列表存储待扩展的节点,关闭列表存储已经扩展过的节点。算法通过不断地选择开放列表中代价最小的节点进行扩展,直到找到目标节点或开放列表为空。原创 2023-09-23 23:11:15 · 939 阅读 · 1 评论 -
基于Matlab的无人机路径规划算法:人工势场
其中,( F_{rep} )表示斥力,( \zeta )是调整斥力强度的参数,( n )是障碍物的数量,( d_i )是无人机与第i个障碍物之间的距离,( \frac{\partial d_i}{\partial q} )表示距离对位置的梯度。其中,( F_{rep} )表示斥力,( \zeta )是调整斥力强度的参数,( n )是障碍物的数量,( d_i )是无人机与第i个障碍物之间的距离,( \frac{\partial d_i}{\partial q} )表示距离对位置的梯度。原创 2023-09-23 22:44:15 · 954 阅读 · 1 评论 -
图像压缩编码的MATLAB实现——无损预测编码压缩图像
无损预测编码是一种基于预测误差的编码方法,通过预测当前像素的数值,并使用预测误差来表示原始像素值与预测值之间的差异。通过使用当前像素的上一个像素和左边像素的预测值,以及解码的预测误差,我们可以恢复原始像素值。接下来,我们循环遍历图像的每个像素,并使用当前像素的上一个像素和左边像素的预测值来预测当前像素的值。然后,将预测误差计算为当前像素值与预测值之间的差异,并将其存储在预测误差矩阵中。在本文中,我们将介绍一种基于无损预测编码的图像压缩编码算法,并提供MATLAB实现的源代码。原创 2023-09-23 20:48:34 · 384 阅读 · 1 评论 -
基于MATLAB编程的深度信念网络(DBN)在01分类编码和分类预测中的应用
DBN通过逐层训练的方式,将每一层的RBM作为上一层的输入,从而逐的输入,从而逐渐提取出更高级别的抽象特征。通过逐层预训练和微调的方式,可以提取数据中的重要特征,并通过分类预测算法实现准确的分类结果。在微调过程中,可以使用一些常见的优化算法,如随机梯度下降(Stochastic Gradient Descent,SGD)来调整DBN的参数,以最小化分类误差。通过训练DBN模型,可以利用学习到的特征来进行分类任务。需要注意的是,上述代码只是一个简单的示例,实际的DBN实现可能需要更复杂的网络结构和训练算法。原创 2023-09-23 19:21:38 · 96 阅读 · 1 评论 -
基于线性回归预测碳排放约束下的煤炭消费量
然而,需要注意的是,线性回归模型是一种简单的模型,对于复杂的数据关系可能表现不佳。然而,需要注意的是,线性回归模型是一种简单的模型,对于复杂的数据关系可能表现不佳。接下来,代码将数据集划分为训练集和测试集,其中80%的数据用于训练,20%的数据用于测试。接下来,代码将数据集划分为训练集和测试集,其中80%的数据用于训练,20%的数据用于测试。在本文中,我们将介绍如何使用线性回归方法在碳排放约束条件下预测煤炭消费量,并提供相应的MATLAB源代码。然后,我们使用线性回归方法对训练集进行训练,得到模型的参数。原创 2023-09-23 17:54:03 · 136 阅读 · 1 评论 -
基于混合策略改进哈里斯鹰算法求解单目标优化问题IHHO附Matlab代码
IHHO算法是一种新型的优化算法,基于鹰群觅食行为的模拟,通过模拟鹰的搜索策略来优化目标函数。总结起来,本文介绍了基于混合策略改进的哈里斯鹰算法(IHHO)来求解单目标优化问题,并提供了相应的Matlab代码。同时,根据具体的问题,需要适当调整算法的参数设置和策略函数的定义,以获得更好的优化结果。在每次迭代中,我们根据一定的策略选择领导者,并根据领导者的位置更新其他鹰的位置。在上述代码中,我们首先设置了算法的参数,如最大迭代次数、种群大小、变量的上下界以及变量的维度。需要注意的是,代码中的。原创 2023-09-23 16:11:20 · 85 阅读 · 1 评论 -
MATLAB周期锯齿波
在上面的代码中,我们首先计算了锯齿波的斜率,即每单位时间内锯齿波的上升或下降量。接下来,我们遍历时间向量中的每个时间点,并根据当前时间点在周期中的位置计算锯齿波信号的值。在上面的代码中,我们首先计算了锯齿波的斜率,即每单位时间内锯齿波的上升或下降量。接下来,我们遍历时间向量中的每个时间点,并根据当前时间点在周期中的位置计算锯齿波信号的值。周期的长度表示锯齿波一次完整循环的时间,而幅值表示锯齿波的峰值和谷值之间的差异。通过运行上面的代码,我们可以生成周期为2、幅值为1的周期锯齿波信号,并将其绘制周期锯齿波。原创 2023-09-23 15:39:34 · 786 阅读 · 1 评论 -
使用麻雀算法优化电机的Simulink模型(Matlab)
在本文中,我们将介绍如何使用麻雀算法优化电机的Simulink模型,并提供相应的源代码。该模型包括电机的输入电压、电机的转矩输出和电机的速度响应。我们的目标是通过优化电机模型的参数,使得电机的速度响应在给定负载下达到最佳性能。通过迭代计算每只麻雀的适应度,并更新最优解和麻雀的位置,我们可以优化电机模型的参数,以达到更好的速度响应性能。设置为Simulink模型的参数,然后通过仿真模型计算电机的速度响应,并将速度响应的最大值作为适应度。函数来执行电机模型参数的优化,并获取最优的参数和相应的成本(适应度)。原创 2023-09-23 14:27:49 · 121 阅读 · 1 评论 -
Simulink自定义函数模块学习和应用 - 初识S函数和S函数简单案例学习
S函数提供了一种灵活的方式来添加自定义算法和功能,从而满足特定的模型需求。本文将介绍S函数的基本概念,并提供一个简单的S函数案例以帮助读者理解其用法。本文介绍了Simulink中S函数的基本概念,并提供了一个简单的S函数案例。S函数是Simulink中的一种自定义函数模块,可以使用MATLAB代码编写模块的行为。与其他Simulink模块不同,S函数的行为不仅由输入和输出决定,还可以包含状态、参数和自定义的MATLAB代码。以上是一个简单的S函数案例,通过该案例,我们可以看到S函数的基本结构和用法。原创 2023-09-23 12:27:17 · 924 阅读 · 0 评论 -
遗传算法优化矩形零件排列问题
在工程和制造领域中,优化零件排列是一个重要的问题。遗传算法是一种常用的优化方法,可以应用于解决矩形零件排列优化问题。我们的目标是找到一种最佳的排列方式,使得这些零件之间没有重叠,并且尽可能地减小矩形区域的面积。使用上述代码,可以求解矩形零件排列优化问题,并找到最佳的排列方式。你可以根据实际情况修改代码中的参数和零件信息,以适应不同的问题场景。它包括选择、交叉和变异等操作,通过不断迭代生成新的解,并逐渐逼近最优解。在每一代的迭代中,首先计算种群的适应度,然后进行选择、交叉和变异操作,生成新的种群。原创 2023-09-23 10:40:05 · 72 阅读 · 0 评论 -
无线传感器网络覆盖优化问题的人工鱼群算法解决方案
在无线传感器网络的覆盖优化问题中,我们可以将传感器节点看作鱼群中的鱼,节点之间的通信范围则可以看作是鱼的感知范围。我们的目标是找到最佳的节点部署方案,以最大化网络的覆盖范围。通过模拟鱼群觅食行为,该算法能够找到最佳的传感器节点部署方案,以提高网络的覆盖范围和性能。最后,我们对节点的位置进行边界处理,确保节点的位置在合理范围内。然后,使用随机初始化节点的位置坐标(X)。通过人工鱼群算法的优化过程,传感器节点将会根据其当前位置和周围节点的情况进行移动,最终找到一个最优的部署方案,以最大化网络的覆盖范围。原创 2023-09-23 08:34:18 · 65 阅读 · 0 评论 -
基于计算机视觉的邮政编码识别(附带Matlab源码)
通过这些代码,我们可以实现自动识别图像中的邮政编码,并在原始图像上进行标注。在本文中,我们将使用计算机视觉技术来实现自动识别邮政编码的功能,并提供使用Matlab编写的源代码。以下是一个简单的示例代码,展示了如何使用计算机视觉工具箱中的函数来加载图像、进行预处理、检测和识别邮政编码。在实际应用中,我们可以根据需要进一步优化邮政编码识别系统,例如使用更复杂的图像处理算法、训练更大规模的数据集以提高准确性,或者与其他技术(如机器学习或深度学习)相结合以实现更高级的功能。函数提取每个区域的图像,并将其传递给。原创 2023-09-23 08:03:44 · 202 阅读 · 0 评论 -
改进的基于 MATLAB 的机器人避障路径规划算法
改进的算法在标准的人工势场算法基础上,引入了一些优化策略,提高了路径规划的效果和性能。总结起来,基于 MATLAB 的改进人工势场算法为机器人的避障路径规划提供了一种有效的方法。改进的算法引入了一些优化策略,例如增加了引力和斥力的增益参数,可以根据实际情况进行调整。在机器人导航和路径规划领域,人工势场算法是一种常用的方法,用于实现机器人的避障行为。本文将介绍一种基于 MATLAB 的改进人工势场算法,用于机器人的避障路径规划。函数,传入机器人的起始位置、目标位置和障碍物的位置列表,即可得到避障后的路径。原创 2023-09-23 04:53:05 · 1155 阅读 · 0 评论 -
基于遗传算法的风光蓄电池微电网优化调度
在微电网系统中,风光蓄电池是一种常见的能源组合,它结合了风能和太阳能,能够实现能源的可持续供应。为了实现对风光蓄电池微电网系统的优化调度,遗传算法成为一种有效的方法。我们的目标是通过优化调度算法,最大化微电网系统的经济性和可靠性。同时,我们需要确保微电网系统的运行在一定的约束条件下,如电池充放电限制、电网供电限制等。通过遗传算法的迭代过程,我们可以找到最优的调度方案,以最大化经济性和可靠性。通过遗传算法的迭代过程,我们可以得到最优的风光蓄电池微电网优化调度方案。遗传算法是一种模拟自然进化过程的优化算法。原创 2023-09-23 03:48:17 · 148 阅读 · 0 评论 -
基于MATLAB GUI的蚁群算法机器人栅格地图最短路径规划
然后,我们将蚂蚁的位置初始化为起始点,并开始迭代搜索最短路径。首先,我们需要创建一个MATLAB GUI界面,以便用户可以输入栅格地图的相关参数,例如起始点、目标点、障碍物位置等。首先,我们创建一个MATLAB GUI界面,让用户可以输入栅格地图的相关参数,例如起始点、目标点和障碍物位置。在上述代码中,我们创建了一个包含起始点、目标点和障碍物位置输入框的GUI窗口,并添加了一个"开始规划"按钮。在上述代码中,我们创建了一个包含起始点、目标点和障碍物位置输入框的GUI窗口,并添加了一个"开始规划"按钮。原创 2023-09-22 23:11:02 · 917 阅读 · 0 评论 -
大气湍流相位屏的Kolmogorov模型结合次谐波补偿的MATLAB实现
低频部分由湍流的大尺度结构引起,而高频部分则由湍流的小尺度结构引起。我们将使用变量N表示相位屏的大小,L表示大尺度结构的尺度大小,l0表示小尺度结构的尺度大小。具体而言,我们可以通过将相位屏的相位加上低频部分和高频部分来进行次谐波补偿。Kolmogorov模型是一种用于描述大气湍流的理论模型,它假设大气湍流的能量分布在不同尺度上是均匀的。相位屏是在天文观测和光学通信等领域中常见的问题,特别是在大气湍流导致的像差补偿中。通过运行以上代码,我们可以生成基于Kolmogorov模型和次谐波补偿的大气湍流相位屏。原创 2023-09-22 22:14:49 · 324 阅读 · 0 评论 -
语音编辑:实现音频的剪辑、混音和效果处理
音频效果处理是指对音频应用各种效果,如均衡器、混响、压缩等,以改变音频的声音特性。本文介绍了如何使用MATLAB实现音频编辑的常见功能,包括音频剪辑、音频混音和音频效果处理。在语音处理领域,音频编辑是一项重要的任务,它涉及到对音频进行剪辑、混音和效果处理,以满足不同应用的需求。音频混音是将多个音频信号合并成一个混合音频信号的过程。接下来,通过设置均衡器对象的参数,如采样率和不同频段的增益,实现均衡器的效果处理。然后,通过设置起始时间和结束时间,并计算对应的样本索引,从原始音频中提取出指定时间段的音频。原创 2023-09-22 20:28:34 · 77 阅读 · 0 评论 -
公务车和私家车的车辆充气负荷模拟
公务车的充气负荷计算公式为充气负荷 = (速度 * 油门开度) ^ 2,私家车的充气负荷计算公式为充气负荷 = 速度 * 油门开度。在模拟车辆的充气负荷之前,我们首先需要了解充气负荷的概念。车辆的充气负荷模拟是一项重要的研究内容,可以帮助我们了解车辆在不同工况下的充气负荷情况。通过使用上述代码,我们可以根据不同的速度和油门开度来模拟公务车和私家车的充气负荷情况。在示例使用部分,我们定义了速度为60km/h,油门开度为0.6的情况下,分别模拟了公务车和私家车的充气负荷,并通过MATLAB的。原创 2023-09-22 19:09:42 · 39 阅读 · 0 评论 -
基于小波变换、离散余弦变换和奇异值分解的数字水印嵌入、提取和攻击方法(附带Matlab代码)
然后,我们将原始图像转换为灰度图像,并对灰度图像进行DWT变换,得到四个频域子图像LL、LH、HL和HH。在上述代码中,我们加载水印嵌入后的图像,并对其进行DWT变换,得到四个频域子图像LL、LH、HL和HH。最后,我们使用逆SVD变换将攻击后的低频系数LL恢复到空域,并进行逆DWT变换得到攻击后的图像,并进行显示。在上述代码中,我们加载水印嵌入后的图像,并将其转换为灰度图像。然而,需要注意的是,数字水印技术仍然存在一定的攻击风险,因此在实际应用中,需要综合考虑安全性和鲁棒性,并采取适当的防护措施。原创 2023-09-22 18:10:18 · 101 阅读 · 0 评论 -
路径规划算法:基于探索者优化的机器人路径规划算法- 附MATLAB代码
首先,我们定义了问题,包括起始位置和目标位置,以及环境地图和障碍物的位置。然后,我们创建了初始的探索者群体,并进行迭代搜索,每次迭代都根据探索者的适应度进行选择和更新。最后,我们输出了找到的最优路径,并使用MATLAB绘图函数可视化了结果。路径规划是机器人领域中的重要问题之一,它涉及在给定环境中找到最优路径以实现特定任务。探索者优化是一种基于启发式搜索的路径规划方法,它模拟了探险者在未知环境中探索的行为。在本文中,我们将介绍基于探索者优化的机器人路径规划算法,并提供相应的MATLAB代码实现。原创 2023-09-22 16:37:14 · 1076 阅读 · 0 评论 -
电平交叉率与平均衰落持续时间的Matlab实现
当信号超过阈值时,我们将当前衰落持续时间记录到fade_durations数组中,并将当前衰落持续时间重置为零。电平交叉率(Level Crossing Rate,LCR)和平均衰落持续时间(Average Fade Duration,AFD)是无线通信系统中常用的性能指标,用于评估信道的多样性和信号传输质量。在无线通信中,我们关注信道的衰落过程对信号传输的影响,平均衰落持续时间可以帮助我们评估这种影响。在无线通信中,我们经常关注信道的衰落过程,而电平交叉率可以帮助我们了解信号的衰落情况。原创 2023-09-22 15:32:45 · 164 阅读 · 0 评论 -
无线通信链路误码率仿真:ZF、MMSE和频域均衡的对比(Matlab实现)
在无线通信系统中,链路误码率(Bit Error Rate,BER)是衡量系统性能的重要指标之一。本文将介绍三种常用的均衡方法,分别是零 forcing(ZF)、最小均方误差(Minimum Mean Square Error,MMSE)和频域均衡,并提供相应的Matlab源代码。通过对不同均衡方法的仿真结果进行比较,可以评估它们在不同信道条件下的性能差异,并选择合适的均衡方法来优化系统性能。通过以上代码示例,我们可以在Matlab中实现ZF、MMSE和频域均衡三种方法的链路误码率仿真。原创 2023-09-22 15:10:30 · 342 阅读 · 0 评论 -
语音信号的短时平均过零率及其Matlab源码
短时平均过零率是一种重要的语音信号特征,可以用于分析语音的频率特性。通过计算并绘制短时平均过零率曲线,我们可以观察到语音信号在时间域内的过零率变化情况,从而更好地理解和分析语音信号。短时平均过零率(Short-Term Zero Crossing Rate)是一种常用的语音信号特征,用于描述信号在时间域内的频率变化。通过以上的计算和绘图,我们可以观察到语音信号在时间域内的过零率变化情况,从而获得信号的频率特性信息。短时平均过零率的计算方法是将信号分帧,并在每一帧内计算过零点的个数。短时平均过零率的概念。原创 2023-09-22 13:30:02 · 231 阅读 · 0 评论 -
基于分布式模型和一致性控制实现多架固定翼无人机追捕目标仿真
然后,通过模拟追捕过程,在每个时间步长内计算无人机之间的相对位置和距离,并根据一致性控制算法计算无人机的速度控制指令。接下来,更新无人机的速度和位置,并更新目标的位置。在多架固定翼无人机追捕目标的场景中,我们假设无人机之间可以通过通信网络进行信息交换,并且目标的位置信息可以通过各个无人机的传感器获取。通过以上的代码示例,我们可以看到无人机在追捕过程中能够相互协作,并最终将目标捕获。这种基于分布式模型和一致性控制的方法可以应用于实际的无人机系统中,实现多架无人机的协同任务执行。希望以上内容对您有所帮助!原创 2023-09-22 12:16:29 · 78 阅读 · 0 评论