基于混合策略改进哈里斯鹰算法求解单目标优化问题IHHO附Matlab代码

140 篇文章 27 订阅 ¥59.90 ¥99.00
本文介绍了改进的哈里斯鹰算法(IHHO)用于单目标优化,并提供了Matlab代码示例。IHHO算法结合了哈里斯鹰算法和混合策略,提高搜索效率和全局收敛性。文章详细阐述了算法流程,包括种群初始化、适应度计算、位置更新等步骤,并提示读者根据实际问题调整参数和目标函数。
摘要由CSDN通过智能技术生成

在本文中,我们将介绍一种基于混合策略改进的哈里斯鹰算法(Improved Harris’ Hawks Optimization, IHHO)来求解单目标优化问题。我们将提供相应的Matlab代码,以便读者实践和理解该算法的实现过程。

单目标优化问题是指在给定的约束条件下,寻找使得目标函数取得最优值的变量取值。IHHO算法是一种新型的优化算法,基于鹰群觅食行为的模拟,通过模拟鹰的搜索策略来优化目标函数。该算法结合了哈里斯鹰算法(Harris’ Hawks Optimization, HHO)和混合策略的思想,进一步改进了搜索效率和全局收敛性。

以下是IHHO算法的Matlab实现代码:

% 参数设置
maxIter = 100;  % 最大迭代次数
popSize = 50;   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值