n阶Hilbert矩阵的Gauss消去法求解

本文通过编程利用列主元高斯消去法求解n阶Hilbert矩阵的线性方程,并计算解的前向误差和残差的无穷范数。实验发现,当n=13时,相对前向误差达到100%,条件数约为4.5865e+16。在n≤8的情况下,求解是精确的。
摘要由CSDN通过智能技术生成

问题:

\quad n阶Hilbert矩阵H的矩阵元素为 H i j = 1 i + j − 1 , i = 1 , ⋯   , n , j = 1 , ⋯   , n H_{}ij=\frac{1}{i+j-1},i=1,\cdots,n,j=1,\cdots,n Hij=i+j11i=1,,n,j=1,,n。令 b = H x b=Hx b=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值