Codeforces 103B. Cthulhu 寻找奈亚子

B. Cthulhu
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

...Once upon a time a man came to the sea. The sea was stormy and dark. The man started to call for the little mermaid to appear but alas, he only woke up Cthulhu...

Whereas on the other end of the world Pentagon is actively collecting information trying to predict the monster's behavior and preparing the secret super weapon. Due to high seismic activity and poor weather conditions the satellites haven't yet been able to make clear shots of the monster. The analysis of the first shot resulted in an undirected graph with n vertices and m edges. Now the world's best minds are about to determine whether this graph can be regarded as Cthulhu or not.

To add simplicity, let's suppose that Cthulhu looks from the space like some spherical body with tentacles attached to it. Formally, we shall regard as Cthulhu such an undirected graph that can be represented as a set of three or more rooted trees, whose roots are connected by a simple cycle.

It is guaranteed that the graph contains no multiple edges and self-loops.

Input

The first line contains two integers — the number of vertices n and the number of edges m of the graph (1 ≤ n ≤ 1000 ≤ m ≤ ).

Each of the following m lines contains a pair of integers x and y, that show that an edge exists between vertices x and y (1 ≤ x, y ≤ n, x ≠ y). For each pair of vertices there will be at most one edge between them, no edge connects a vertex to itself.

Output

Print "NO", if the graph is not Cthulhu and "FHTAGN!" if it is.

Sample test(s)
input
6 6
6 3
6 4
5 1
2 5
1 4
5 4
output
FHTAGN!
input
6 5
5 6
4 6
3 1
5 1
1 2
output
NO
Note

Let us denote as a simple cycle a set of v vertices that can be numbered so that the edges will only exist between vertices number 1 and22 and 3, ..., v - 1 and vv and 1.

A tree is a connected undirected graph consisting of n vertices and n - 1 edges (n > 0).

A rooted tree is a tree where one vertex is selected to be the root.


奈亚子只有一个环,环上每个点都是一棵树。。。

#include <iostream>
#include <cstring>

using namespace std;

int n,m;
int a[111][111];
int p[111]= {0};
int dis[111]= {0};
bool v[111]= {0};
int cnt=0;

bool find_cycle(int i,int papa)
{
    //cerr<<i<<" ------- "<<papa<<endl;
    v[i]=true;
    for (int j=1; j<=n; j++)
    {
        if (j!=papa&&i!=j&&a[i][j]>0)
        {
            if (!v[j])
            {
                p[cnt++]=j;
                if (find_cycle(j,i)) return true;
                cnt--;
            }
            else
            {
                p[cnt++]=j;
                return true;
            }
        }
    }
    return false;
}

bool dfs(int i,int papa)
{
    v[i]=true;
    for (int j=1;j<=n;j++)
    {
        if (i!=j&&j!=papa&&a[i][j])
        {
            if (papa==0&&dis[j]==0) continue;
            if (v[j]||dis[j]==0)
            {
                return true;
            }
            else
            {
                if (dfs(j,i)) return true;
            }
        }
    }
    return false;
}

void len_dfs(int i)
{
    v[i]=true;
    for (int j=1;j<=n;j++)
    {
        if (!v[j]&&a[i][j]>0) len_dfs(j);
    }
}

int main()
{
    memset(dis,-1,sizeof(dis));
    cin>>n>>m;
    for (int i=1; i<=m; i++)
    {
        int x,y;
        cin>>x>>y;
        a[x][y]=a[y][x]=1;
    }
    p[cnt++]=1;
    memset(v,0,sizeof(v));
    bool ret=find_cycle(1,0);
    if (ret)
    {
        dis[p[cnt-1]]=0;
        for (int i=cnt-2; i>=0; i--)
        {
            if (p[i]==p[cnt-1]) break;
            dis[p[i]]=0;
        }
        //ready_dfs
        for (int i=1;i<=n;i++)
        {
            if (dis[i]==0)
            {
                memset(v,0,sizeof(v));
                if (dfs(i,0))
                {
                    ret=false;
                    break;
                }
            }
        }
        //dfs_over
    }

    memset(v,0,sizeof(v));
    len_dfs(1);
    for (int i=1;i<=n;i++)
    {
        if (!v[i]) ret=false;
    }
    if (ret) cout<<"FHTAGN!"<<endl;
    else cout<<"NO"<<endl;

    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值