CD操作
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 320 Accepted Submission(s): 88
Problem Description
在Windows下我们可以通过cmd运行DOS的部分功能,其中CD是一条很有意思的命令,通过CD操作,我们可以改变当前目录。
这里我们简化一下问题,假设只有一个根目录,CD操作也只有两种方式:
1. CD 当前目录名\...\目标目录名 (中间可以包含若干目录,保证目标目录通过绝对路径可达)
2. CD .. (返回当前目录的上级目录)
现在给出当前目录和一个目标目录,请问最少需要几次CD操作才能将当前目录变成目标目录?
这里我们简化一下问题,假设只有一个根目录,CD操作也只有两种方式:
1. CD 当前目录名\...\目标目录名 (中间可以包含若干目录,保证目标目录通过绝对路径可达)
2. CD .. (返回当前目录的上级目录)
现在给出当前目录和一个目标目录,请问最少需要几次CD操作才能将当前目录变成目标目录?
Input
输入数据第一行包含一个整数T(T<=20),表示样例个数;
每个样例首先一行是两个整数N和M(1<=N,M<=100000),表示有N个目录和M个询问;
接下来N-1行每行两个目录名A B(目录名是只含有数字或字母,长度小于40的字符串),表示A的父目录是B。
最后M行每行两个目录名A B,表示询问将当前目录从A变成B最少要多少次CD操作。
数据保证合法,一定存在一个根目录,每个目录都能从根目录访问到。
每个样例首先一行是两个整数N和M(1<=N,M<=100000),表示有N个目录和M个询问;
接下来N-1行每行两个目录名A B(目录名是只含有数字或字母,长度小于40的字符串),表示A的父目录是B。
最后M行每行两个目录名A B,表示询问将当前目录从A变成B最少要多少次CD操作。
数据保证合法,一定存在一个根目录,每个目录都能从根目录访问到。
Output
请输出每次询问的结果,每个查询的输出占一行。
Sample Input
2 3 1 B A C A B C 3 2 B A C B A C C A
Sample Output
2 1 2
Source
Recommend
liuyiding
先求每个点的深度。
再求出待询问两点间的最近公共祖先。
第一次写lca问题,码略挫
----------------
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int maxn=411111;
char name_x[1111];
char name_y[1111];
map<string,int>mp;
struct ANS{
int x;
int y;
int lca;
}ans[maxn];
int p[maxn];
int head[maxn];
int qhead[maxn];
struct NODE{
int to;
int next;
int num;
int lca;
};
NODE edges[maxn];
NODE qedges[maxn];
int edge,qedge;
void addedge(int u,int v)
{
edges[edge].to=v;edges[edge].next=head[u];head[u]=edge++;
}
void addqedge(int u,int v,int num)
{
qedges[qedge].num=num;
qedges[qedge].to=v;qedges[qedge].next=qhead[u];qhead[u]=qedge++;
}
int find(int x)
{
if (p[x]!=x) p[x]=find(p[x]);
return p[x];
}
bool visit[maxn];
void LCA(int u)
{
p[u]=u;
int k;
visit[u]=true;
for (k=head[u];k!=-1;k=edges[k].next)
{
if (!visit[edges[k].to])
{
LCA(edges[k].to);
p[edges[k].to]=u;
}
}
for (k=qhead[u];k!=-1;k=qedges[k].next)
{
if (visit[qedges[k].to])
{
qedges[k].lca=find(qedges[k].to);
qedges[k^1].lca=qedges[k].lca;
//cerr<<qedges[k].lca<<"---lca---"<<qedges[k].num<<endl;
ans[qedges[k].num].lca=qedges[k].lca;
}
}
}
int ind[maxn];
int dep[maxn];
void dfs(int u,int pat,int deep)
{
int k;
dep[u]=deep;
for (k=head[u];k!=-1;k=edges[k].next)
{
if (edges[k].to!=pat)
dfs(edges[k].to,u,deep+1);
}
}
int main()
{
int T,n,m;
int x,y;
int cnt;
int root;
scanf("%d",&T);
while (T--)
{
//初始化
memset(head,-1,sizeof(head));
memset(qhead,-1,sizeof(qhead));
memset(edges,0,sizeof(edges));
memset(qedges,0,sizeof(qedges));
memset(ind,0,sizeof(ind));
memset(dep,0,sizeof(dep));
memset(visit,0,sizeof(visit));
mp.clear();
edge=0;
qedge=0;
cnt=1;
//读入数据
scanf("%d%d",&n,&m);
for (int i=1;i<=n-1;i++)
{
scanf("%s%s",name_x,name_y);
//映射
if (mp[name_x]==0)
{
x=cnt;
mp[name_x]=cnt++;
}
else
{
x=mp[name_x];
}
if (mp[name_y]==0)
{
y=cnt;
mp[name_y]=cnt++;
}
else
{
y=mp[name_y];
}
//cerr<<"x y "<<x<<" "<<y<<endl;
//添加边
addedge(y,x);
addedge(x,y);
//计算入度
ind[x]++;
}
//寻找根节点
root=0;
for (int i=1;i<cnt;i++)
{
if (ind[i]==0)
{
root=i;
}
}
//cerr<<root<<"root"<<endl;
//读入待处理数据
for (int i=1;i<=m;i++)
{
scanf("%s%s",name_x,name_y);
x=mp[name_x];
y=mp[name_y];
//添加正反询问边
addqedge(x,y,i);
addqedge(y,x,i);
ans[i].x=x;
ans[i].y=y;
}
//寻找lca
//cerr<<"aaaaaaaaaaaaaaaa"<<endl;
LCA(root);
//计算深度
dfs(root,-1,1);
//for (int i=1;i<=n;i++) cerr<<dep[i]<<endl;
//处理询问
//cerr<<"aaaaaaaaaaaaaaaa"<<endl;
for (int i=1;i<=m;i++)
{
int as=0;
as=dep[ans[i].x]-dep[ans[i].lca];
if (ans[i].lca!=ans[i].y) as++;
if (ans[i].x==ans[i].y) as=0;
printf("%d\n",as);
}
}
return 0;
}