POJ 3207 Ikki's Story IV - Panda's Trick 2-SAT

本文深入探讨了游戏开发领域的关键技术,包括游戏引擎、编程语言、硬件优化等,并重点阐述了AI音视频处理的应用场景和实现方法,如语义识别、物体检测、语音变声等。通过实例分析,揭示了这些技术如何提升游戏体验和互动性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ikki's Story IV - Panda's Trick
Time Limit: 1000MS Memory Limit: 131072K
Total Submissions: 6914 Accepted: 2565

Description

liympanda, one of Ikki’s friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki.

liympanda has a magic circle and he puts it on a plane, there are n points on its boundary in circular border: 0, 1, 2, …, n − 1. Evil panda claims that he is connecting m pairs of points. To connect two points, liympanda either places the link entirely inside the circle or entirely outside the circle. Now liympanda tells Ikki no two links touch inside/outside the circle, except on the boundary. He wants Ikki to figure out whether this is possible…

Despaired at the minesweeping game just played, Ikki is totally at a loss, so he decides to write a program to help him.

Input

The input contains exactly one test case.

In the test case there will be a line consisting of of two integers: n and m (n ≤ 1,000, m ≤ 500). The following m lines each contain two integers ai and bi, which denote the endpoints of the ith wire. Every point will have at most one link.

Output

Output a line, either “panda is telling the truth...” or “the evil panda is lying again”.

Sample Input

4 2
0 1
3 2

Sample Output

panda is telling the truth...

--------

把线看做点,建图,twosat

-----------

/** head-file **/

#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <list>
#include <set>
#include <map>
#include <algorithm>

/** define-for **/

#define REP(i, n) for (int i=0;i<int(n);++i)
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i)
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)
#define REP_1(i, n) for (int i=1;i<=int(n);++i)
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)
#define REP_N(i, n) for (i=0;i<int(n);++i)
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)
#define REP_1_N(i, n) for (i=1;i<=int(n);++i)
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)

/** define-useful **/

#define clr(x,a) memset(x,a,sizeof(x))
#define sz(x) int(x.size())
#define see(x) cerr<<#x<<" "<<x<<endl
#define se(x) cerr<<" "<<x
#define pb push_back
#define mp make_pair

/** test **/

#define Display(A, n, m) {                      \
    REP(i, n){                                  \
        REP(j, m) cout << A[i][j] << " ";       \
        cout << endl;                           \
    }                                           \
}

#define Display_1(A, n, m) {                    \
    REP_1(i, n){                                \
        REP_1(j, m) cout << A[i][j] << " ";     \
        cout << endl;                           \
    }                                           \
}

using namespace std;

/** typedef **/

typedef long long LL;

/** Add - On **/

const int direct4[4][2]={ {0,1},{1,0},{0,-1},{-1,0} };
const int direct8[8][2]={ {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int direct3[6][3]={ {1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1} };

const int MOD = 1000000007;
const int INF = 0x3f3f3f3f;
const long long INFF = 1LL << 60;
const double EPS = 1e-9;
const double OO = 1e15;
const double PI = acos(-1.0); //M_PI;

const int maxn=2111;
const int maxm=2111111;
int n,m;
struct EDGENODE{
    int to;
    int next;
};
struct TWO_SAT{
    int head[maxn*2];
    EDGENODE edges[maxm*2];
    int edge;
    int n;
    bool mark[maxn*2];
    int S[maxn*2],c;
    void init(int n){
        this->n=n;
        clr(mark,0);
        clr(head,-1);
        edge=0;
    }
    void addedge(int u,int v){
        edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++;
    }
    // x = xval or y = yval
    void add_clause(int x,int xval,int y,int yval){
        x=x*2+xval;
        y=y*2+yval;
        addedge(x^1,y);
        addedge(y^1,x);
    }
    bool dfs(int x){
        if (mark[x^1]) return false;
        if (mark[x]) return true;
        mark[x]=true;
        S[c++]=x;
        for (int i=head[x];i!=-1;i=edges[i].next)
            if (!dfs(edges[i].to)) return false;
        return true;
    }
    bool solve(){
        for (int i=0;i<n*2;i+=2)
            if (!mark[i]&&!mark[i+1]){
                c=0;
                if (!dfs(i)){
                    while (c>0) mark[S[--c]]=false;
                    if (!dfs(i+1)) return false;
                }
            }
        return true;
    }
}TwoSAT;

int A[maxn];
int B[maxn];

int main()
{
    while (~scanf("%d%d",&n,&m))
    {
        REP(i,m){
            scanf("%d%d",&A[i],&B[i]);
            if (A[i]>B[i]) swap(A[i],B[i]);
        }
        TwoSAT.init(m);
        REP(i,m)
        {
            int fix=A[i];
            int nw=(B[i]-fix+n)%n;
            REP(j,m)
            {
                if (i==j) continue;
                int nx=(A[j]-fix+n)%n;
                int ny=(B[j]-fix+n)%n;
                if (nx>ny) swap(nx,ny);
                if ( nx<nw&&ny>nw ){
                    TwoSAT.add_clause(i,0,j,0);
                    TwoSAT.add_clause(i,1,j,1);
                }
            }
        }
        if (TwoSAT.solve()) puts("panda is telling the truth...");
        else puts("the evil panda is lying again");
    }
    return 0;
}





内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值