Python处理Excel表格——了解Groupby与merge的用法

作为数据分析师日常工作中会遇到各种各样的数据处理需求, 因为数据量巨大的原因无法手动处理表格,正好会应用Python工具,今天就借此机会来展示Pandas中Groupby与Merge处理数据表格的快捷与美化。

GROUPBY:函数主要的作用是进行数据的分组以及分组后地组内运算!groupby的过程就是将原有的DataFrame按照groupby的字段(这里是company),划分为若干个分组DataFrame,被分为多少个组就有多少个分组DataFrame。所以说,在groupby之后的一系列操作(如aggapply等),均是基于子DataFrame的操作。

MERGE:数据合并时可以使用merge方法,对两个dataFrame根据某一个series合并,这个方法非常好用,只要找到了合并的标准,新的数据就可以重构出来。

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)

我这里就解释两个参数

一个是on :他就相当于sql表中的外键

另一个是how:他就相当于两个表是左外连接、右外连接、内连接、全连接

项目实例:

一:数据处理背景以及目标

下表是需要处理的原始数据表格式:

 下表是需要输出的数据表格式:

 目标:分别查看各级类目的相关的销量以及件数,进行分层次化数据处理与汇总。

二:数据分层处理——GROUPBY用于将数据进行分层

#插入相应模块以备调用
import pandas as pd
import numpy as np
#读取原始数据表
df = pd.read_excel(r'C:\Users\XXXX\Desktop\练习.xlsx&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值