cyhjb
码龄21年
关注
提问 私信
  • 博客:10,427
    10,427
    总访问量
  • 4
    原创
  • 810,817
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 目前就职: 世纪龙信息网络有限责任公司
  • 加入CSDN时间: 2003-09-05
博客简介:

cyhjb的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得3次评论
  • 获得48次收藏
创作历程
  • 8篇
    2020年
成就勋章
TA的专栏
  • docker实战
    2篇
  • 深度学习
    6篇
兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

通过Dockerfile 定制镜像

使用 Dockerfile 定制镜像使用 Dockerfile 定制镜像Dockerfile 指令详解FROM 指定基础镜像RUN 执行命令构建镜像镜像构建上下文(Context)其它 docker build 的用法直接用 Git repo 进行构建用给定的 tar 压缩包构建从标准输入中读取 Dockerfile 进行构建COPY 复制文件CMD 容器启动命令ENTRYPOINT 入口点ENV 设置环境变量ARG 构建参数VOLUME 定义匿名卷EXPOSE 声明端口WORKDIR 指定工作目录USER
原创
发布博客 2020.12.16 ·
315 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【深度学习系列】卷积神经网络详解(二)——自己手写一个卷积神经网络

上篇文章中我们讲解了卷积神经网络的基本原理,包括几个基本层的定义、运算规则等。本文主要写卷积神经网络如何进行一次完整的训练,包括前向传播和反向传播,并自己手写一个卷积神经网络。如果不了解基本原理的,可以先看看上篇文章:【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理卷积神经网络的前向传播首先我们来看一个最简单的卷积神经网络:1.输入层---->卷积层以上一节的例子为例,输入是一个44 的image,经过两个22的卷积核进行卷积运算后,变成两个3*3的feature_map以卷
转载
发布博客 2020.12.16 ·
2315 阅读 ·
4 点赞 ·
1 评论 ·
28 收藏

【深度学习系列】数据预处理

PaddlePaddle的基本数据格式根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,包括四种数据类型和三种序列格式:四种数据类型:dense_vector:稠密的浮点数向量。sparse_binary_vector:稀疏的二值向量,即大部分值为0,但有值的地方必须为1。sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。integer:整型格式api如下:paddle.v2.data_type.dense_vector(d
转载
发布博客 2020.12.16 ·
440 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【深度学习系列】手写数字识别实战

【深度学习系列】手写数字识别实战  上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下。不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个“hello word”程序----mnist手写数字识别。下一次再介绍用PaddlePaddle做分布式训练的方案。其实之前也写过一篇用CNN识别手写数字集的文章(链接戳这里~),是用keras实现的,这次用了paddlepaddle后,正好可以简
转载
发布博客 2020.12.16 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度。有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下。在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识。神经网络的预备知识为什么要用神经网络?特征提取的高效性。大家可能会疑惑,对于同
转载
发布博客 2020.12.16 ·
940 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

人工智能训练平台

人工智能训练平台AI平台的架构如下图所示,用户通过Web Portal调用REST Server的API提交作业(Job)和监控集群,其它第三方工具也可通过该API进行任务管理。随后Web Portal与Launcher交互,以执行各种作业,再由Launcher Server处理作业请求并将其提交至Hadoop YARN进行资源分配与调度。可以看到,AI平台给YARN添加了GPU支持,使其能将GPU作为可计算资源调度,助力深度学习。其中,YARN负责作业的管理,其它静态资源(下图蓝色方框所示)则由Kube
原创
发布博客 2020.12.15 ·
4699 阅读 ·
0 点赞 ·
2 评论 ·
8 收藏

常见流行的深度学习框架

TheanoTheano最初诞生于蒙特利尔大学 LISA 实验室,于2008年开始开发,是第一个有较大影响力的Python深度学习框架。Theano 是一个 Python 库,可用于定义、优化和计算数学表达式,特别是多维数组(numpy.ndarray)。在解决包含大量数据的问题时,使用 Theano 编程可实现比手写 C 语言更快的速度,而通过 GPU 加速,Theano 甚至可以比基于 CPU 计算的 C 语言快上好几个数量级。Theano 结合了计算机代数系统(Computer Algebra .
原创
发布博客 2020.12.15 ·
782 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Docker定制镜像指令详解

一、定制镜像定制镜像Dockerfile类似于Makfile,用户使用docker build就可以编译镜像,使用该命令可以设置编译镜像时使用的CPU数量、内存大小、文件路径等语法:docker build [OPTIONS] PATH| URL| - 常见选项:-t 设置镜像的名称和TAG,格式为name:tag-f Dockerfile的名称,默认为PATH/Dockerfile 例子:docker build -f ~/php.Dockerfile . 注意:PATH是编译镜像使用
原创
发布博客 2020.12.15 ·
606 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

万能搜索引擎码程序 ASP版

发布资源 2009.05.14 ·
application/x-rar