- 博客(8)
- 收藏
- 关注
原创 P4464 [国家集训队] JZPKIL AC题解
答案为 $$-\sum_{q=0}^{k-1}p^{qx}\times p^y\times p^{(k-q-1)i}$$这是一个经典问题,可以通过斯特林数,伯努利数,差分,拉格朗日插值等方法求得(我用的是伯努利数)答案为 $$\sum_{q=0}^kp^{qx}\times p^{(k-q)i}$$得到了 𝑍(𝑝𝑘)Z(pk) 的值之后,由积性函数性质可以得到 𝑍(𝑛)Z(n)由 𝑥𝑦=(𝑥,𝑦)[𝑥,𝑦]xy=(x,y)[x,y]枚举 𝑑=𝑝𝑞(0≤𝑞≤𝑘)d=pq(0≤q≤k)枚举 gcdgcd。
2024-06-26 16:21:45 352
原创 P2493 [SDOI2011] 贪食蛇AC题解
同样分两种情况:如果汪老板进食后不是最弱的蛇,那他就会选择吃,这样喵老板就凉了,所以他当初会选择不吃,这样石老板就不会死,那么石老板当初就会选择吃。这样,最后一条蛇会选择吃,倒数第二条蛇为了保命会选择不吃,倒数第三条蛇可以放心大胆的吃,倒数第四条蛇会保命选择不吃,倒数第五条蛇可以放心吃。石老板进食后变成最弱的蛇了,如果喵老板进食后不是最弱的蛇,他就会选择吃(根据开头的结论),这样石老板就凉了,所以石老板当初的选择一定是不吃。当前最强的蛇吃了最弱的蛇之后,如果没有变成最弱的蛇,他一定会选择吃!
2024-06-20 14:12:46 289
原创 P7078 [CSP-S2020] 贪吃蛇AC题解
同样分两种情况:如果汪老板进食后不是最弱的蛇,那他就会选择吃,这样喵老板就凉了,所以他当初会选择不吃,这样石老板就不会死,那么石老板当初就会选择吃。石老板进食后变成最弱的蛇了,如果喵老板进食后不是最弱的蛇,他就会选择吃(根据开头的结论),这样石老板就凉了,所以石老板当初的选择一定是不吃……这样,最后一条蛇会选择吃,倒数第二条蛇为了保命会选择不吃,倒数第三条蛇可以放心大胆的吃,倒数第四条蛇会保命选择不吃,倒数第五条蛇可以放心吃。当前最强的蛇吃了最弱的蛇之后,如果没有变成最弱的蛇,他一定会选择吃!
2024-06-20 14:08:32 323
原创 P2483 【模板】k 短路 / [SDOI2010] 魔法猪学院AC题解
那么 𝑃′P′ 对于中任意相邻(从 𝑠s 到 𝑡t 的顺序)的两条边 𝑒,𝑓e,f,满足 𝑓f 的起点在 𝑇T 中为 𝑒e 的终点的祖先或者为相同点。对于满足性质 11 的 𝑃′P′的定义的边集 𝑆S,有且仅有一条 𝑠s 到 𝑡t 的路径的边集 𝑃P,使得 𝑃′=𝑆P′=S。**2.**尾部接上一条起点为以 𝑥x 为起点的这条边的终点在 𝑇T 中祖先(包括自己)连出去的所有非树边的最小边。对于一条 𝑠s 到 𝑡t 的路径的边集 𝑃P,去掉 𝑃P 中和 𝑇T 的交集,记为 𝑃′P′。
2024-06-20 13:48:32 280
原创 P1737 [NOI2016] 旷野大计算AC题解
第二高位答案就是 𝑆((𝑎′−230)×241)=𝑆(𝑎′×241−271)S((a′−230)×241)=S(a′×241−271)。考虑 𝑎a 的 22 进制的最高位,即第 3131 位,很显然,若这一位为 11 ,则 𝑎⩾231a⩾231;所以我们计算最高位时就输出 𝑆((𝑎−231)×241)S((a−231)×241) ,即 𝑆(𝑎×241−272)S(a×241−272)。用 𝑆(𝑥)S(x) 获得 00 和 11 要求自变量 𝑥x 有正负两种取值,所以我们构造这个正负的取值。
2024-06-20 13:40:42 366 1
原创 P1335 [NOI2013] 小 Q 的修炼AC题解
我们只是片面的看 C4,但是 C5,C6 却又多出了两个问题,第一个是跳转不再均匀,如果不满足条件可能会跳到任意地方,这个可以通过更改背包实现方法做到,但此时又出现了一些无意义的条件跳转,它使得数据不均匀,可以通过把分段背包改成对每一个操作进行的背包解决,不过这真的很慢。𝑚 = 2,意味着仅有一个变量需要讨论,我们发现,该变量在整个数据中增加的次数仅有一,再看就发现这实际上就是一个输出序列的背包,数据中可以分成均匀的段模拟一个物品,不难实现。本人 6年级 耗时5个月luogu。接下来由我为大家讲解。
2024-06-19 21:34:17 790
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人