在没提出ResNet模型之前,传统深度模型随着模型的加深 准确率降低 误差更大
ResNet提出了残差网络,可以轻松搭建超过1000层的神经网络,使模型越深准确率有所提升。
# CIFAR-10数据集默认mean 和std vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
ResNet50预训练模型默认输出是1000分类 需要指定最后一层全连接输出为10
在没提出ResNet模型之前,传统深度模型随着模型的加深 准确率降低 误差更大
ResNet提出了残差网络,可以轻松搭建超过1000层的神经网络,使模型越深准确率有所提升。
# CIFAR-10数据集默认mean 和std vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
ResNet50预训练模型默认输出是1000分类 需要指定最后一层全连接输出为10