Tarjan算法


tarjan算法
有向图G中,如果两个顶点可以相互通达,则称两个顶点 强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个 强连通图。非强连通图有向图的极大强连通子图,称为 强连通分量(strongly connected components)。
Tarjan算法是用来求有向图的 强连通分量的。求有向图的 强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求 双连通分量的Tarjan算法。
Tarjan算法是基于对图 深度优先搜索的算法,每个 强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的 节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个 强连通分量
定义 DFN(u)为节点u搜索的次序编号( 时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个 强连通分量
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

pascal代码

proceduretarjan(x:longint);
vari,j,k:longint;
begin
inc(h);
dfn[x]:=h;low[x]:=h;//dfn,low初始化
inc(t);
f[t]:=x;//当前元素入栈
s[x]:=true;ss[x]:=true;//s,ss标记
fori:=1to200doifp[x,i]thenbegin//枚举每一条边
ifnots[i]thenbegin
tarjan(i);//如果节点i未被访问过继续向下找
low[x]:=min(low[x],low[i]);
end
elseifss[i]thenlow[x]:=min(low[x],dfn[i]);//如果节点i还在栈内
end;
ifdfn[x]=low[x]thenbegin
inc(ans);
whilef[t+1]<>xdobegin
ss[f[t]]:=false;
dec(t);
end;
end;//如果节点x是强连通分量的根,退栈直到x的前一个数据,记录这个强连通分量的数据
end;


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LCA(最近公共祖先)是指在一棵树中,找到两个节点的最近的共同祖先节点。而Tarjan算法是一种用于求解强连通分量的算法,通常应用于有向图中。它基于深度优先搜索(DFS)的思想,通过遍历图中的节点来构建强连通分量。Tarjan算法也可以用于求解LCA问题,在有向无环图(DAG)中。 具体来说,在使用Tarjan算法求解LCA时,我们需要进行两次DFS遍历。首先,我们从根节点开始,遍历每个节点,并记录每个节点的深度(即从根节点到该节点的路径长度)。然后,我们再进行一次DFS遍历,但这次我们在遍历的过程中,同时进行LCA的查找。对于每个查询,我们将两个待查询节点放入一个查询列表中,并在遍历过程中记录每个节点的祖先节点。 在遍历的过程中,我们会遇到以下几种情况: 1. 如果当前节点已被访问过,说明已经找到了该节点的祖先节点,我们可以更新该节点及其所有后代节点的祖先节点。 2. 如果当前节点未被访问过,我们将其标记为已访问,并将其加入到查询列表中。 3. 如果当前节点有子节点,我们继续递归遍历子节点。 最终,对于每个查询,我们可以通过查询列表中的两个节点的最近公共祖先节点来求解LCA。 需要注意的是,Tarjan算法的时间复杂度为O(V+E),其中V为节点数,E为边数。因此,对于大规模的树结构,Tarjan算法是一种高效的求解LCA问题的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值