Tarjan 算法(超详细!!)

推荐在 cnblogs 上阅读

Tarjan 算法

前言

说来惭愧,这个模板仅是绿的算法至今我才学会。

我还记得去年 CSP2023 坐大巴路上拿着书背 Tarjan 的模板。虽然那年没有考连通分量类似的题目。

现在做题遇到了 Tarjan,那么,重学,开写!

另,要想学好此算法的第一件事——膜拜 Tarjan 爷爷。

Tarjan 算法到底是什么

其实广义上有许多算法都是 Tarjan 发明的(大名鼎鼎的 Link-Cut-Tree 正是出自他手),而本文介绍的是可以解决图中强连通分量的算法。

也就是狭义的 Tarjan 算法。

什么是强连通分量

对于一个图 G G G 来说,一个字图中,任意两点都可以彼此到达(存在路径),这个子图就称为图 G G G 的强连通分量。特别地,一个点也是一个强连通分量。

算法思路

Tarjan 是基于 DFS 实现的,走过的边会形成一棵搜索树。可以看作是原图删去一些边留下来而形成的。

看个图吧:

如果我们把抛弃的边分为三个大类,可以分为:

  1. 横叉边(红)
  2. 前向边(黄)
  3. 后向边(蓝)

上图把抛弃的边画出来就是这样了:

容易发现,能够构成环的只有前向边。而我们所需要得到的连通分量,正需要环。

我们怎么知道 DFS 到什么时候是一条前向边呢?

我们可以在 DFS 过程中给每个点打一个时间戳(实际上就是 DFS 序, dfn[x]=++cnt),如此,当我们遍历某节点的儿子 v v v 时, v v v 是一个已访问过的节点,那么我们找到了后向边。

如何维护?——用两个数组

  1. dfn[i]:储存时间戳。
  2. low[i]:储存 i i i 点可以访问到的最高祖先的 dfn 值(因为 DFS 序由小到大,所以储存的数越小、表示 i i i 点访问祖先能力越强)。

特殊地,一个点访问祖先的能力再差,也可以访问到自己。

代码实现

code

int dfn[MAXN],low[MAXN],tim;
bool vis[MAXN];
int ans;
stack<int> st;
int belong[MAXN];
vector<int> G[MAXN];
void tarjan(int x)
{
    dfn[x]=low[x]=++tim;
    st.push(x);
    vis[x]=1;
    for(int i=hd[x];i;i=lt[i])
    {
        int v=en[i];
        if(!dfn[v])
        {
            tarjan(v);
            low[x]=min(low[x],low[v]);
        }
        else if(vis[v]) // 此时找到后向边,不着急操作,等待回溯以后在操作
            low[x]=min(low[x],dfn[v]);
    }
    if(dfn[x]==low[x]) // 这是根节点独有的性质
    {
        ++ans; // 看看目前已经是第几个强连通分量了
        int top;
        do
        {
            top=st.top();st.pop();
            vis[top]=0;
            belong[top]=ans; // belong[] : 某节点属于那个强连通分量
            G[ans].push_back(top); // 强连通分量有哪些成员节点。
        } while (top!=x);
    }
}

P1726 上白泽慧音

题目要求:求出最大强连通分量、并输出其成员。如数量相同,输出最小的成员集合。

此题目中,belong[] 就不需要了,存成员是必要的;按字典序输出的话,把成员丢进优先队列带走,秒了!

code

#include<bits/stdc++.h>
using namespace std;

#define int long long

const int MAXN=2e5+5;

int n,m;
int dfn[MAXN],low[MAXN],tim;
bool vis[MAXN];
int ans;
stack<int> st;
int belong[MAXN];
int su,hd[MAXN],lt[MAXN],en[MAXN];
priority_queue<int,vector<int>,greater<int>> G[MAXN];
struct node
{
    int id,sz,val;
}p[MAXN];

void add(int u,int v)
{
    en[++su]=v,lt[su]=hd[u],hd[u]=su;
}

void tarjan(int x)
{
    dfn[x]=low[x]=++tim;
    st.push(x);
    vis[x]=1;
    for(int i=hd[x];i;i=lt[i])
    {
        int v=en[i];
        if(!dfn[v])
        {
            tarjan(v);
            low[x]=min(low[x],low[v]);
        }
        else if(vis[v])
            low[x]=min(low[x],dfn[v]);
    }
    if(dfn[x]==low[x])
    {
        ++ans;
        p[ans].id=ans;
        p[ans].val=st.top();
        int top;
        do
        {
            top=st.top();st.pop();
            vis[top]=0;
            belong[top]=ans;
            p[ans].sz++;
            G[ans].push(top);
        } while (top!=x);
    }
}

signed main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1,u,v,w;i<=m;i++)
    {
        scanf("%lld%lld%lld",&u,&v,&w);
        add(u,v);
        if(w==2) add(v,u);
    }
  
    for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);

    sort(p+1,p+ans+1,[](node x,node y){
        return x.sz==y.sz?x.val<y.val:x.sz>y.sz;
    });

    printf("%lld\n",p[1].sz);
    while (!G[p[1].id].empty())
    {
        printf("%lld ",G[p[1].id].top());
        G[p[1].id].pop();
    }
  
    return 0;
}

参考文献

  • 27
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Tarjan算法和Kosaraju算法都是求解有向图强连通分量的算法,它们的时间复杂度都为O(N+M),其中N为图中节点数,M为图中边数。 Tarjan算法的基本思想是通过DFS遍历图中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原图进行一次DFS,得到一个反向图,然后再对反向图进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建图和反向图 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值