- package com.visionsky;
- public class test {
- private char[] numbers = new char[] { 'a', 'b', 'c','d','e'};
- public int n;
- private String lastResult = "";
- private boolean validate(String s) {
- if (s.compareTo(lastResult) <= 0)
- return false;
- if (s.charAt(2) == 'b')
- return false;
- if (s.indexOf("ce") >= 0 || s.indexOf("ec") >= 0)
- return false;
- return true;
- }
- /*
- * index 用于判断当前result中存有字符串的序号
- * result 当前运行时字符串的结果
- */
- public void list(String index, String result) {
- for (int i = 0; i < numbers.length; i++) {
- if (index.indexOf(i + 48) < 0) {//i+48 表示当前i的ascii码,即对i做char型类型转换,判断当前字符是否存在于result中
- String s = result + String.valueOf(numbers[i]);
- if (s.length() == numbers.length) {
- if (validate(s)) {
- System.out.println(s);
- lastResult = s;
- n++;
- }
- break;
- }
- list(index + String.valueOf(i), s);
- }
- }
- }
- public static void main(String[] args) {
- test t = new test();
- t.list("", "");
- System.out.println("总数:" + t.n);
- }
- }
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
字符串的排列
- 博客分类:
- 数据结构及算法
【转】http://zhedahht.blog.163.com/blog/static/254111742007499363479/
题目:输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a、b、c所能排列出来的所有字符串abc、acb、bac、bca、cab和cba。
分析:这是一道很好的考查对递归理解的编程题,因此在过去一年中频繁出现在各大公司的面试、笔试题中。
我们以三个字符abc为例来分析一下求字符串排列的过程。首先我们固定第一个字符a,求后面两个字符bc的排列。当两个字符bc的排列求好之后,我们把第一个字符a和后面的b交换,得到bac,接着我们固定第一个字符b,求后面两个字符ac的排列。现在是把c放到第一位置的时候了。记住前面我们已经把原先的第一个字符a和后面的b做了交换,为了保证这次c仍然是和原先处在第一位置的a交换,我们在拿c和第一个字符交换之前,先要把b和a交换回来。在交换b和a之后,再拿c和处在第一位置的a进行交换,得到cba。我们再次固定第一个字符c,求后面两个字符b、a的排列。
既然我们已经知道怎么求三个字符的排列,那么固定第一个字符之后求后面两个字符的排列,就是典型的递归思路了。
基于前面的分析,我们可以得到如下的参考代码:
void Permutation(char* pStr, char* pBegin);
/
// Get the permutation of a string,
// for example, input string abc, its permutation is
// abc acb bac bca cba cab
/
void Permutation(char* pStr)
{
Permutation(pStr, pStr);
}
/
// Print the permutation of a string,
// Input: pStr - input string
// pBegin - points to the begin char of string
// which we want to permutate in this recursion
/
void Permutation(char* pStr, char* pBegin)
{
if(!pStr || !pBegin)
return;
// if pBegin points to the end of string,
// this round of permutation is finished,
// print the permuted string
if(*pBegin == '\0')
{
printf("%s\n", pStr);
}
// otherwise, permute string
else
{
for(char* pCh = pBegin; *pCh != '\0'; ++ pCh)
{
// swap pCh and pBegin
char temp = *pCh;
*pCh = *pBegin;
*pBegin = temp;
Permutation(pStr, pBegin + 1);
// restore pCh and pBegin
temp = *pCh;
*pCh = *pBegin;
*pBegin = temp;
}
}
}